
1

The University of Western Australia
Department of Electrical & Electronic Engineering

Real-Time Distributed Systems 408 Laboratory - 2002

Introduction to CORBA and Project Introduction

PART 1: INTRODUCTION TO CORBA

Aim

The aim of the first part of this laboratory session is to familiarize yourself with the CORBA
'middleware' distributed processing environment, which will be used as the primary distributed
processing platform in the main project-based part of the laboratory. It is also an opportunity to
do some basic performance benchmarks on a CORBA platform and a comparison with RMI.

The capabilities of the OMG CORBA standard ORB have been discussed in lecture material.
This lab uses a “mostly CORBA 2.3 compliant” ORB supplied with Sun’s J2SE V1.3.

This lab is conducted in the 3.09 IT Teaching Lab. You should reboot a PC to WinNT (if booted
to Linux) and log on in your student account. If you don't have an account, or can't log in, see
computer support (preferably before the lab starts).

Getting started

All J2SE documentation is on-line. There are also links to some basic CORBA tutorial
introductions on the unit web page.

Manual compilation of a first CORBA client/server program

Although we are going to use Forte for later work, it is useful to explore manual compilation
first (since for, example, it can be a lot faster to use if you are used to JDK, but it doesn't offer
the same debugging environment, or project manager facilities). We will try both methods so
you can use whichever suits you better at the time.

Directory setup & file copying

Assuming that you have a home area on the PCs on the H: drive, create an H:\rds408\corba
directory to use for your lab programs. Bring up a DOS console and then copy the source files
for the grid example, i.e. all files and directories from U:\rds408\corba\grid to
H:\rds408\corba\grid

IDL compilation

In the DOS window and directory H:\rds408\corba\grid, run the IDL compiler with:

> idlj –td java_client idl\grid.idl

If you get error here it is most likely because you are in the wrong directory or a path is not setup
in the environment for you (e.g. set PATH=%PATH%;C:\jdk1.3.1_01\bin).

2

The IDL compiler should have generated the client side IDL interface java files. Then run:

> idlj –fserver –td java_server idl\grid.idl

Which should generate the server side IDL interface java files without errors.

The –td switch specifies the target directory for the generated files, and the –fserver switch is
required to generate server side file (otherwise client side files are generated).

Have a look in the java_client/grid and java_server/grid subdirectories at the generated client
stub code and server skeleton code.

Client and Server compilation

We now need to compile all client and server programs. In the H:\rds408\corba\grid\java_client
directory run:

> javac –d classes Client.java grid*.java

Change directory to H:\rds408\corba\grid\java_server and run:

> javac –d classes Server.java grid*.java

The –d switch directs class file output to the classes subdirectory. Now have a look at the class
files in H:\rds408\corba\grid. Apart from the Client.class and the Server.class (and its
implementation class GridServant.class) all the other class files arise from compilation of the
IDL generated java files. Note that the reason for compiling client and server files in separate
steps is that later on you may only want to make changes to one or the other but not both.

Manual execution of a CORBA client/server program

Run Naming Service

The CORBA naming service must be running before registering the server with it, so from a new
DOS window run:

> tnameserv

Note that a –ORBInitialPort switch is optional here (and is set to port 900 by default), and that
you only need to run the nameserver once and leave it running.

Register Server

The first thing to do is register the server with the ORB and then advertise it with the naming
service so that our client will be able to find it.

In a DOS window go to the java_server subdirectory for the grid example and run:

> java –cp classes Server

3

The grid server should now initialize the ORB and create the grid object, bind a name for grid
server with the name service and then hand back control to the ORB to process incoming
requests. Note that if the nameserver is run with a non-default ORBInitialPort switch, then the
Server needs to be also be run with the same ORBInitialPort value.

Client execution

Open up another DOS window and go to the java_client sub-directory and run the grid client
program with:

> java –cp classes Client

You should see something like this:

Initializing ORB
Obtaining name service object reference
Obtaining grid server object reference
Grid width is 100
Grid height is 100
Grid value at x = 2 y = 4 is 123

i.e. the client contacts the naming service to get an object reference to gridServer, then converts
this string into an object reference, then you get the grid dimensions output and the execution of
the set and get methods.

We could go on now to look at operation of this example across multiple processors, but lets
delay that step to introduce another simple example and to look at Java/CORBA development
using Forte. You can terminate your Server with a ^C before continuing, but keep the
nameserver running.

Another CORBA example using Forte for Java

Directory setup & file copying

We can use Forte to run another CORBA client/server program, this time to look at a basic
performance benchmark. Creating another count sub-directory in your area, copy over the
directory U:\rds408\corba\count to H:\rds408\corba\count.

Open project

Now run Forte. When you do this for the first time it will bring up a panel to ask you where to
setup your project files, if you specify H:\Forte all should be well (i.e. it just needs to
somewhere in your home area where project files can be stored). Create a new Count project
with Project/Project Manager/New, then use File/Mount Filesystem three times to mount the
three filesystems:

H:\rds408\corba\count\java\idl
H:\rds408\corba\count\java\java_client
H:\rds408\corba\count\java\java_server

4

Compilation

The IDL program can be compiled as before by bringing up a DOS prompt, then change
directory to the H:\rds408\corba\count directory and generate java stub and skeleton files with:

> idlj –td java_client idl/count.idl
> idlj –fserver –td java_server idl/count.idl

Going back to Forte's Explorer view, select the H:\rds408\corba\count\java_server directory,
then right click, and select Build All. Hopefully you won't see errors as it compiles. Then select
the H:\rds408\corba\count\java_client directory, and Build All again.

Execution

Still in Forte's Explorer view, select the Server class in H:\rds408\corba\count\java_server,
right-click, then Execute. Wait for the Server to indicate that it has started ok, and then restore
the Explorer view by clicking on the Editing tab, select the Client class, and then right click and
Execute. You can observe execution messages from both the client and server in the Output
Window, by selecting the appropriate I/O tab.

Run the client a few times to get some idea of the average "ping" time, it should be around a few
milliseconds or less. Recall in the course notes that we quoted about 3 msec, but that was on a
P120 machine. Also note that the Execution window shows that the Server class is still running
(you can right click on the Server class in the Execution window and Terminate Process if you
wish to do so).

Execution of the example CORBA client/server programs on different processors

The Grid example again

You have now completed the initial examples that you can do separately with CORBA, and you
now need to coordinate with a colleague using another PC. Firstly, let's go back to the simple
Grid example. It should work in exactly the same way across different processors. The only
requirement is that the PCs must share the same ORB (i.e. have the same ORBInitialPort value
and have one nameserver running that uses the same value).

The ORBInitialHost switch must be specified on the client and must match the PC name on
which the nameserver is running. The switch is optional for the Server if it is running on the
same PC as the nameserver.

Assuming the nameserver is running on pc60, run the server on either machine with:

> java –cp classes Server –ORBInitialHost pc60

Run the client on the other machine with:

> java –cp classes Client –ORBInitialHost pc60

And that's it - simple client/server under CORBA. Let's go back to the Count example to make
sure we can do that with Forte on different processors as well.

5

The Count example again

The Count example works in exactly the same way. You can run Forte now on both the
designated server PC and any client PC and open up the Count project. The only change we
need to make is the switches in Forte used for external execution

In the Properties Window for the Client, select the Execution tab and in the blank Arguments list
we need to at least add (assuming the designated server PC is pc60):

-ORBInitialHost pc60

We can specify the ORBInitialPort here as well if this is different to the default. Run the Client
program on any PC and the Server program on the same PC as the name server (so the Forte
configuration is unchanged here). Of course, note the average ping time and the variation from
the time recorded for local Client/Server operation. You may find that the local ping could even
be faster. That's because the observed performance can have more to do with working through
two JVMs on two machines versus one JVM on each machine, than network overhead.

A Java Remote Method Invocation (RMI) comparison

If you have totally forgotten what RMI is about then you should consult the introduction in the
Java tutorial on this topic. You can find a link from the rds408 unit web page.

Get source files

Get a copy of all files from U:\rds408\countRMI to your area H:\rds408\countRMI.

Compilation

Bring up a DOS prompt and cd to the countRMI directory, and run (noting that its is case-
sensitive):

> rmic -d . -classpath . CountRMIImpl

This creates the RMI stub and skeleton classes that the Client and Server will use respectively.
Now compile the Client and Server classes with:

> javac *.java

Start the RMI registry and register the Server

Also from the DOS prompt in the countRMI project directory run the RMI registry with:

> start rmiregistry

To run the server use the provided batch file (with a parameter indicating that the server is
available on the locahost):

> Server localhost

6

Note that if the server fails to run and you get exceptions at this stage, it is most likely due to an
embedded path in the Server batch file (i.e. it assumes the codebase will be in
H:\rds408\countRMI as specified above). If you examine this batch file anyway you will see that
a security policy in java.policy is specified, and the contents of this file are:

grant {
 permission java.net.SocketPermission "*:1024-65535", "connect,accept";

 permission java.net.SocketPermission "*:80", "connect";
};

which allows remote connections to the TCP port number (usually > 1024 used for RMI
connections).

Run the Client

Run the client with the provided batch file:

> Client localhost

and you should see something like this for the client:

Trying hostname: localhost
Setting Sum to 0
Incrementing
Avg Ping = 0.741 msecs
Sum = 1000

Your average ping time will differ. Recall that we quoted about 6 msec in the course notes, but
that was on a P120 machine (and Java JIT compiler and JVM environments have improved since
then).

Ping your server from another machine

Now terminate your running Server and rerun with the actual PC name you are on with:

> Server pcname

Then from another PC run:

> Client pcname

where pcname is the same (i.e. the Server PC name)

Note the average ping time. Again try a few runs for both remote and local, and you can again
expect some variation. The comparison with CORBA performance is of most interest though.

CORBA and Rational Rose

Rational Rose provides some support for CORBA application development, mainly through the
IDL. It is useful to introduce you to this (and it is a bit more practice with Rose). Run Rational

7

Rose and go to Tools/Model Properties/Edit/CORBA/Project and select Include Path and set it to
where you have located your Count.idl file (e.g. H:\rds408\corba\count), click elsewhere, then
OK.

Now go to Tools/CORBA/Reverse Engineer CORBA and select Count.idl, select Add to add it to
the lower panel and then select it. Hit Reverse then Done. This should produce a Count interface
into an empty Rose model. It should also automatically show up as both a class and component
in the left browser panel.

To make the interface visible in the actual class and component diagrams, click on Logical
View/Main in the Browser and from Query/Add Classes select the count package, then select
Count class, then >>>> the OK. Then click on the Component View/Main and from Query/Add
Components select the idl package in the scroll box. Then select the Count component, select
>>>> then OK. Note the component shows up in the component view as the typical lollipop
stereotype (as an interface), while in the class view the interface method and attributes should be
displayed.

Finally you can browse the Count.idl code if you (still in the Component view) right-click on
Count and with the CORBA option, select Browse code. This just shows you how to reverse
engineer a CORBA idl file into Rose - you can also expand the attributes (sum) and operations
set & increment) of the Count interface to see more detail of this.

You could now proceed to add other aspects of the Client and Server java programs (which aren't
specific to CORBA of course). As a model to have a look at, there is an existing partial model
file for the count client and server in Count.mdl (you will also find this in U:\rds408\corba\count
- so get it from there and load it into Rose). The CountClient and CountServer are just java
classes, while Count.idl is a CORBA class (which is a Java interface class). You could try doing
something similar for the Grid example (but leave that until after the lab for now).

That effectively completes the "technology primer" for the project part of the lab. In the next
section we get to grips with the target hardware and the distributed application problem you are
being asked to solve.

8

PART 2: PROJECT INTRODUCTION

Aim

The aim of the group project part of the lab, which also extends over the next four lab sessions, is
to design, develop and test the distributed lift controller software for a set of four adjacent lifts
all servicing the same floors in the same building. The distributed software platform to be used is
CORBA. The programming language to be used is Java, and you are required to implement a
multi-threaded solution. The actual software development process to be used is flexible, but you
are encouraged to use UML as much as possible to document your software. You also need to
give particular attention to how you are going to control and test your system. For example, you
will need a supervisory interface on the server to initiate and monitor operation of the system.

Since this laboratory is not about interfacing to the lift hardware, you are given an Application
Programming Interface (or API) to the lift hardware that does this job for you. As a simple start,
you are also given the first step in a UML model and the associated Java code. This first step just
initializes the lift interface and drives the lift to floor 0 ready for normal operation. The simple
use case is written from the perspective of the lift maintainer who has to update the software and
manually restart the multiple lift system individually (and the setup is identical for all lifts in the
set). Your job is to provide the lift system controller software for the lift maintainer to install.

Hardware Description

The four-floor lift models to be used in this
laboratory are a scaled representation of a
commercial lift. They have similar floor and lift
controls to the full-sized implementation (but do not
have a separate floor display on each floor – since
this doesn’t really add to the functionality of the lifts
where our passengers are only notionally 1cm tall or
so).

The Lift:
A. 1 × lift motor – selectable up/down, selectable

two speeds fast/slow

The Floor Panel:
B. 6 × lift call request buttons (only one at the top

and bottom floors and two on the two
intermediate floors)

C. 6 × lift call request acknowledgment display
LEDS (only one at the top and bottom floors and
two on the two intermediate floors)

D. 6 × lift call answer display LEDS (only one at
the top and bottom floors and two on the two
intermediate floors). Note that these LEDS
effectively indicate that the lift is currently
responding to the lift call (i.e. it is now moving
in the direction shown and will stop at this floor)

LIFT PANEL

FLOOR
PANEL

0

1

2

3 A

B/C

D

E

F/G

H

I/J

L

9

E. 7 × floor sensors (one on each floor, and one between each floor)

The Lift Panel:
F. 4 × lift floor request buttons
G. 4 × lift floor request acknowledgment display LEDS
H. 1 × lift floor display LED array
I. 1 × lift door open light
J. 1 × lift floor arrival bell

Additional controls and displays (not under software control):
K. 2 × limit switches at extreme ends of the lift travel to disable the motor
L. 1 × motor override switch to manually drive the motor away from the limit stops
M. 7 × diagnostic LEDS for all floor sensors on the controller PCB
N. 7 × diagnostic lift call request LEDS on the controller PCB

PC interface:
• A 48-bit digital I/O PCI bus card (using 2 x 8255s)
• Windows NT device driver in C
• Native interface to a Java Application Programming Interface (API).

Lift Hardware and API Test Program

It is just possible that a lift unit could give some problems, e.g. a lift may no longer stop at a
floor, or a button press may no longer be picked up. A quick test with the LiftTester program
may be in order. You will find this program in U:\rds408\Lift. If you do find a problem, report it,
although it should be possible to work around the problem for the remainder of the lab session.

As an exercise to test out the lift hardware systematically, just use the test program in the
sequence left to right in the panel shown over the page. Note that actions are latched for display,
and are then cleared with a Clear All button on the panel.

Floor Panel:
1) Check all the Lift Call Acknowledgement LEDS by pressing the appropriate buttons on

the LiftTester panel
2) Check all the Lift Call Answer LEDS by pressing the buttons on the LiftTester panel.
3) Check all the Lift Call Buttons be pressing the buttons on the Lift and checking the

corresponding display on Lift Tester.
4) Check all Floor Sensors by pressing Test Floor Sensors which will move the lift past all

sensors in both directions.

Lift Panel:
5) Check all Floor Request LEDS by pressing the buttons on the LiftTester panel.
6) Check all Floor Request Buttons be pressing the buttons on the Lift and checking the

corresponding display on Lift Tester.
7) Check the Lift Bell and Lift Door by pressing the buttons on the LiftTester panel.
8) Check the Floor Number Display by pressing the buttons on the LiftTester panel.

Lift Motor:
9) Check the Lift Motor operation: High/Low Speed, Up/Down and Stop

10

Lift Setup Model and Java Code

As far as setting up the lift for normal operation is concerned we can assume an authorized repair
person (a Lift Maintainer) is able to shut the lift down, update the software, and restore the lift to
normal operation. This use case captures the restoration of normal operation (i.e. before
passengers are able to use the lift at all).

A scenario is defined in the form of a sequence
diagram which details the messaging between Lift
Controller API objects in this scenario: Setup Lift for Operation

Lift Maintainer

 : Lift Maintainer
 : LiftSetup : FloorPanel : LiftMotor : LiftPanel

1: Setup the Lift

9: Lift set up

2: Check where lift is

If Lift not at
floor 0 already

6: Check if lift at floor 0

8: Set Floor Display to floor 0

7: Stop Lift

4: Move lift down

3: Check for lift at floor 0

5: Check where lift is

Lift arrived at
floor 0

1)

2) 3) 4) 5) 6)

7)

8) 9)

11

The messages shown above are then mapped to operations on the classes (see the detailed
LiftAPI package description below for the definition of these operations). These operations are
mapped to Java methods on the LiftAPI package classes.

From the sequence diagram, it is clear that the LiftSetup class has internal state behaviour, which
can be captured with a State Diagram. This behaviour is so simple that such a diagram is hardly
warranted, but it serves here to illustrate a useful starting point to a larger state diagram which
describes the behaviour of the LiftController class (or possibly several interacting classes with
their own state diagrams depending on the design).

 : LiftSetup
 : Lift Maintainer

 : FloorPanel : LiftMotor : LiftPanel

If Lift not at
floor 0 already

1: Setup the Lift

9: Lift set up

6: Check for lift arrival at floor 0

2: floorSense := getFloorSensor()

5: floorSense := getFloorSensor()

7: setLiftStop()

8: setLiftFloorDisplay(0)

3: Check for lift at floor 0

4: setLiftRun(0)

Lift arrived at
floor 0

Check if Lift at Floor 0

entry/ ^aFloorPanel.floorSense := getFloorSensor

Move Lift Down to Start

entry/ ^LiftMotor.setLiftSpeed(High)
entry/ ^LiftMotor.setLiftRun(Down)

Initialize Lift at Floor 0

entry/ currentFloor = 0
entry/ ^LiftPanel.setLiftFloorDisplay(currentFloor)

Check for Lift at Floor 0

do/ ^aFloorPanel.floorSense := getFloorSensor

[aFloorSensor.floor != 0]

Initialize Lift Interface

entry/ ^Lift.initLift

Lift at Floor 0

entry/ ^LiftMotor.setLiftStop

[aFloorSense.floor = 0]

[aFloorSense.floor != 0][aFloorSense.floor = 0]

12

LiftAPI

FloorPanel

getLiftRequest() : FloorDir
getFloorSensor() : FloorSense
setLiftAnswer(floorDir : FloorDir) : int
clearLiftAnswer(floorDir : FloorDir) : int
setLiftRequestAck(floorDir : FloorDir) : int
clearLiftRequestAck(floorDir : FloorDir) : int

(from LiftAPI)

Lift

ini tLift(DLLpath : String) : int
delay(delayTime : long)
closeLift()

(from LiftAPI)

FloorSense

floor : int = 0
inter : int = 0

(from LiftAPI)
FloorDir

floor : int = 0
direction : int = 0

(from LiftAPI)

LiftMotor

setLiftRun(direction : int) : int
setLiftSpeed(speed : int) : int
setLiftStop() : void

(from LiftAPI)

LiftPanel

setLiftBell() : void
clearLiftBel l() : void
setLiftDoor() : void
clearLiftDoor() : void
setLiftFloorDisplay(floor : int) : void
clearLiftFloorDisplay() : void
setFloorRequestAck(floor : int) : int
clearFloorRequestAck(floor : int) : int
getFloorRequest() : int

(from LiftAPI)

To use the LiftAPI package, any Java class (LiftSetup in this example) needs to import it (with
import LiftAPI.*). Copy the contents of the directory U:\rds408\Lift\LiftSetup to your area (say
H:\rds408\Lift\LiftSetup). Run Forte and using Project/New Project create a project called
LiftSetup. Mount the filesystem H:\rds408\Lift\LiftSetup for this project. Then use File/Mount
Filesystem/Mount JAR File and select H:\rds408\Lift\LiftSetup\LiftAPI\LiftAPI.zip for mounting
and inclusion in the classpath. Now compile and run LiftSetup. When you create other new
projects to implement your Lift Controller remember to include the LiftAPI package in the
classpath (i.e. mount the JAR/ZIP filesystem).

The corresponding UML model file with all the diagrams illustrating this section can be found in
U:\rds408\Lift\LiftSetup\LiftSetup.mdl. Have a look at it with Rational Rose. If you have got to
this point with time to spare and want to try something else, have a go at modifying LiftSetup to
implement a simple cyclic mode of lift operation (say initiated by and stopped by a button press)

Java Lift API Overview

The Java API is described by the following UML class model. It is contained in a Java package
LiftAPI, and is made up of six classes which separate the lift API classes into the three main
functional areas of LiftMotor, FloorPanel and LiftPanel, the Lift itself and two utility classes
FloorDir and FloorSense. The detailed LiftAPI description is contained in the Appendix. The
classes make available a total of 20 methods and 4 attributes as indicated. Each method is
defined below. To use it, it is only necessary to call the initLift() method which does some
initialization of the hardware and lower-level interface software. Strictly, when finished with the
Lift, the closeLift() method should be called. Of note, all these methods are implemented as static
methods, since in this application each local controller interacts with only one physical lift object
so the object and its interface package (and classes) are 1-1.

13

Lift API Operation

Although you don’t need to be concerned about the detail of the low-level hardware interface to
the lift you do need to know that the lift hardware does not store events (e.g. button presses or lift
arrivals) so you need to ensure your software does not spend unduly long not processing lift
related operations, or lift related events could be missed.

Project Teams

The lab is run on a project team basis, i.e. all members of each group (3 or 4 per group) work on
the same project. How you divide up the problem is up to your group, but initially at least, it
makes sense to divide up the problem into some obvious areas: analysis of the provided
information and the requirements, design of the solution, prototyping in some areas (e.g. GUI,
CORBA functionality, etc). Once the design is complete, task decomposition is centered on
distribution of coding functions, integration and testing, and finally documentation completion.

Intermediate Assessment

To give you some feedback on how your project is progressing, I will be specifically available in
the 3rd week of labs (week starting 13th May) to assess the functionality of your single lift
controller. You can arrange a time via email/phone/in person for me to attend 3.09 to assess your
progress. All members of the group do not need to be present for this. This assessment is not a
component of your final mark, and is entirely voluntary.

This assessment is against an intermediate objective which should be achieved in this time scale
to allow the full project to be completed in time. This objective is functional control of a single
lift subsystem, with no distributed control or other performance aspects of the solution
considered. The following functional list will be assessed and a mark out of 10 provided. Any
available preliminary design documentation will be commented on, but not included in the
assessment.

Basic Operation

1. Lift movement in response to any single floor request button
2. Lift movement in response to any single lift call request button
3. Lift moves to correct floor when any request is made
4. All requests are acknowledged correctly with the associated button LEDS
5. All door, bell and floor display indications are correct

Multiple Request Operation

6. Lift moves to correct floors in response to multiple floor requests to different floors
7. Lift moves to correct floors in response to multiple lift calls from different floors and request

directions
8. Lift moves to correct floors in response to multiple floor requests to different floors and lift

calls from different floors and request directions
9. All lift call answer displays correctly indicate lift travel intentions to passengers
10. Lift speed is reduced to approach floors and door opens/closes for a reasonable delay

14

Final Assessment

The laboratory assessment in this unit is weighted at 30% of the total RTDS408 unit mark.
Assessment is based on a group lab report that is contributed to by all members of the group and
a group demonstration of the working system. All members of the group should be present at this
demonstration. The report will have a standard blue front cover sheet specifying the percentage
contributions of all group members and it also must be signed by all group members or it will not
be accepted. There should be a single paragraph near the front of the report briefly describing the
contributions of each team member. The format of the report is up to your group but it should
contain:

1. A software requirements section, and a software design section. You should seriously
consider using Rational Rose to provide the required diagrams (and then import them into a
Word document).

2. Any design decisions made in producing a software solution should be documented to
demonstrate application of the design approach.

3. A test specification for the software should also be included since the project demonstration
will be to this test specification (and the degree of compliance/non-compliance shown).

4. The performance of your solution will be assessed. However, this should not be seen as the
overriding requirement (correct functional operation and reliability are also important
attributes). You can use the timing statements from the count example to time how long it
takes the lift starting at floor 0 to fulfill a passenger request on floor 3 when there are just
prior outstanding floor requests to all floors and lift calls from all lower floors (this is
clearly a stress test and should be part of your test specification anyway).

5. Each software component (task or module) should have a brief unit specification.

6. A listing of all operating code and any generated documentation should be included in the
report and stored to your allocated group area on the PCs. This area may be examined as
part of the assessment. Use individual accounts for prototyping, etc.

Duration

The project part of the lab is intended to take a total of four three-hour sessions for group
meetings so scheduled access to the lab for the group is provided for these periods. Apart from
the initial introductory session, there is no requirement for the group to use these allocated
session times. The due date for the final demonstration of your software is by 5.00 pm Friday the
7th June 2002. The due date submission of the lab report is by 5.00pm on Monday the 10th June
2002. Late submission of the report will incur a penalty of 10% per day after this deadline.

Conclusion

Believe it or not, this lab is meant to contain a slight element of fun in it (totally unintentional, of
course). The reason for the somewhat ponderous specifications detailed above, is so that you
know exactly what is required and what will be assessed. This is not intended to limit your
creativity in considering alternative solutions, and even for this fairly simple system, there are
many alternatives (some of which work).

15

APPENDIX

Detailed Java Lift API

This package groups all of the Top-level API classes and is mostly automatically generated by
the Rational Rose UML model file for the API (LiftAPI.mdl).

Lift

 This class provides for the initialisation of the Top Level Lift API

Public Operations:
initLift (DLLpath : String) : int

Purpose:
 Method to initialise the lift interface
Inputs:
 String: Full directory path to the DLL interface to the DII device driver, if no path is specified then the
operation searches the user directory and all set classpaths for the dll
Outputs:
 int status
 = -1 -> Couldn't find any devices (e.g. no DII cards)
 = -2 -> Couldn't find PnPdevice0 (e.g. not the right DII card)
 = -3 -> Couldn't setup 8255s (e.g. card problem)
 = -99 -> DLL not be found (e.g. path not set correctly or not found)

closeLift() :
Purpose:
 Method to close the lift interface (not normally needed since the lift controller runs continuously)
Inputs:
 none
Outputs:
 None

LiftPanel

This class provides the Lift Panel part of the API, and allows the floor request display LEDs, lift floor display
LEDs, internal lift light, lift bell to be controlled and the floor request buttons to be sensed.

Public Operations:
setLiftBell () :

Purpose:
 Method to set the lift bell to ring
Inputs:
 none
Outputs:
 none

clearLiftBell () :
Purpose:
 Method to clear the lift bell ring
Inputs:
 none
Outputs:
 none

16

setLiftDoor (:) :
Purpose:
 Method to set the lift door to open (represented by the lift internal light being switched on)
Inputs:
 none
Outputs:
 none

clearLiftDoor () :
Purpose:
 Method to clear the lift door from open -> close (represented by the lift internal light being switched off)
Inputs:
 none
Outputs:
 none

setLiftFloorDisplay (floor : int) :
Purpose:
 Method to set the lift floor display (7-segment LED)
Inputs:
 int floor
 = 0 -> set floor 0
 = 1 -> set floor 1
 = 2 -> set floor 2
 = 3 -> set floor 3
Outputs:
 none

clearLiftFloorDisplay () :
Purpose:
 Method to clear (blank) the lift floor display (7-segment LED)
Inputs:
 none
Outputs:
 none

setFloorRequestAck (floor : int) :
Purpose:
 Method to set the floor request acknowledgment LEDs within the lift panel floor request buttons
Inputs:
 int floor
 = 0 -> set floor 0 LED
 = 1 -> set floor 1 LED
 = 2 -> set floor 2 LED
 = 3 -> set floor 3 LED
Outputs:
 none

clearFloorRequestAck (floor : int) :
Purpose:
 Method to clear the floor request acknowledgment LEDs within the lift panel floor request buttons
Inputs:
 int floor
 = 0 -> clear floor 0 LED
 = 1 -> clear floor 1 LED
 = 2 -> clear floor 2 LED
 = 3 -> clear floor 3 LED
Outputs:
 none

17

getFloorRequest () : int
Purpose:
 Method to get the latest floor request from the lift panel
Inputs:
 none
Outputs (only returns one event per request)::
 int floor
 = 0 -> floor 0
 = 1 -> floor 1
 = 2 -> floor 2
 = 3 -> floor 3

 = -1 -> no floor request

FloorPanel
This class provides the Floor Panel part of the API, and allows the lift call request display LEDs and lift call
answer display LEDs to be controlled, and the lift call request buttons and floor sensors to be sensed.

Public Operations:
getLiftRequest () : FloorDir

Purpose:
 Method to get a lift call request from the floor panel
Inputs:
 none
Ouputs (only returns one event per request):
 FloorDir.floor
 = 0 -> floor 0
 = 1 -> floor 1
 = 2 -> floor 2
 = 3 -> floor 3
 = -1 -> no lift request
 FloorDir.direction
 = 0 -> down
 = 1 -> up
 = -1 -> no lift request

getFloorSensor () : FloorSense
Purpose:
 Method to get the floor sensor outputs (primary and intermediate).
Inputs:
 none
Outputs (remains set while the lift is at that floor):
 FloorSense.floor
 = 0 -> floor 0
 = 1 -> floor 1
 = 2 -> floor 2
 = 3 -> floor 3
 = -1 -> no floor sensor
 FloorSense.inter
 = 1 -> between floor 0 & 1
 = 2 -> between floor 1 & 2
 = 3 -> between floor 2 & 3
 = -1 -> no intermediate floor sensor

18

setLiftAnswer (floorDir : FloorDir) :
Purpose:
 Method to set the lift call answer LEDs
Inputs:
 FloorDir.floor FloorDir.direction
 0 1 -> set floor 0 Up answer LED
 1 0 -> set floor 1 Down answer LED
 1 1 -> set floor 1 Up answer LED
 2 0 -> set floor 2 Down answer LED
 2 1 -> set floor 2 Up answer LED
 3 0 -> set floor 3 Down answer LED
Outputs:
 none

clearLiftAnswer (floorDir : FloorDir) :
Purpose:
 Method to clear the lift call answer LEDs
Inputs:
 FloorDir.floor FloorDir.direction
 0 1 -> clear floor 0 Up answer LED
 1 0 -> clear floor 1 Down answer LED
 1 1 -> clear floor 1 Up answer LED
 2 0 -> clear floor 2 Down answer LED
 2 1 -> clear floor 2 Up answer LED
 3 0 -> clear floor 3 Down answer LED
Outputs:
 none

setLiftRequestAck (floorDir : FloorDir) :
Purpose:
 Method to set the lift call request acknowledgement LEDs
Inputs:
 FloorDir.floor FloorDir.direction
 0 1 -> set floor 0 Up ack LED
 1 0 -> set floor 1 Down ack LED
 1 1 -> set floor 1 Up ack LED
 2 0 -> set floor 2 Down ack LED
 2 1 -> set floor 2 Up ack LED
 3 0 -> set floor 3 Down ack LED
 Outputs:
 none

clearLiftRequestAck (floorDir : FloorDir) :
Purpose:
 Method to clear the lift call request acknowledgement LEDs
Inputs:
 FloorDir.floor FloorDir.direction
 0 1 -> clear floor 0 Up ack LED
 1 0 -> clear floor 1 Down ack LED
 1 1 -> clear floor 1 Up ack LED
 2 0 -> clear floor 2 Down ack LED
 2 1 -> clear floor 2 Up ack LED
 3 0 -> clear floor 3 Down ack LED
 Outputs:
 none

19

LiftMotor

This class represents the Lift Motor part of the API. and allows the lift motor direction and speed to be
controlled.

Public Operations:
setLiftRun (direction : int) :

Purpose:
 Method to set the lift to run in a particular direction
Inputs:
 int direction
 = 0 -> down
 = 1 -> up
Outputs:
 none

setLiftStop () :
Purpose:
 Method to set the lift to stop
Inputs:
 none
Outputs:
 none

setLiftSpeed (speed : int) :
Purpose:
 Method to set the lift speed
Inputs:
 int speed
 = 0 -> low speed
 = 1 -> high speed
Outputs:
 none

FloorSense
This class just contains two integer attributes for floor and intermediate floor sensors values

Public Attributes:
floor : int
inter : int

FloorDir
This class just contains two integer attributes for floor and direction

Public Attributes:
floor : int
direction : int

20

LiftSetup source

//Source file: LiftSetup.java
import LiftAPI.*;
/*
This class is run by the lift maintainer - it sets up the lift for normal operation
*/
public class LiftSetup
{
 public static void main(String args[])
 {

// Setup some useful constants
final int HIGH = 1; // Lift Motor High speed
final int LOW = 0; // Lift Motor Low speed
final int UP = 1; // Lift Up direction
final int DOWN = 0; // Lift Down direction

// Define a variable to maintain the current floor the lift is on
int currentFloor;

// Create instances of LiftAPI variables
FloorDir aFloorDir = new FloorDir();
FloorSense aFloorSense = new FloorSense();

// Initialize Lift interface
int status = Lift.initLift(""); // Don't specify a DLL path, let the method find it
if (status < 0) { // If error return on setup, no point continuing

System.out.println("Error: initLift failed = "+status);
return;

} else {
System.out.println("Lift API initialised OK");

}

// Check if Lift at Floor 0
aFloorSense = FloorPanel.getFloorSensor();
if (aFloorSense.floor != 0) {

//Move lift down to start
System.out.println("Looking for floor 0, moving down ...");
LiftMotor.setLiftSpeed(HIGH); // Set lift to high speed
LiftMotor.setLiftRun(DOWN); // Drive lift down

// Check for Lift at Floor 0
do {

aFloorSense = FloorPanel.getFloorSensor();
} while (aFloorSense.floor != 0);

// Lift at Floor 0
 LiftMotor.setLiftStop();

}
// Initialize Lift at Floor 0
System.out.println("Lift at Floor 0, stop ...");
currentFloor = 0;
LiftPanel.setLiftFloorDisplay(currentFloor);

 }
}

 GAB 29 April 2002/Rev 2

