1. Consider the case of three periodic tasks:

Task t_1 : $C_1 = 20 \text{ ms}; T_1 = 100 \text{ ms}$ Task t_2 : $C_2 = 40 \text{ ms}; T_2 = 150 \text{ ms}$ Task t_3 : $C_3 = 100 \text{ ms}; T_3 = 350 \text{ ms}$

Apply the Utilization Bound Theorem to determine if these tasks are schedulable using a rate monotonic scheduling strategy. Suppose the computation time for task 1 doubles to 40 msec, now determine if the tasks are schedulable, and then apply the less conservative Completion Time Theorem.

2. Suppose we have four tasks: two periodic, one aperiodic, and one interrupt driven aperiodic. The non-interrupt driven tasks require access to a shared data store, and we wish to give the interrupt-drive task the highest priority:

periodic task t_1 : $C_1 = 30$ ms, $T_1 = 100$ ms aperiodic task t_2 : $C_2 = 30$ ms, $T_2 = 150$ ms interrupt driven aperiodic task t_a : $C_a = 10$ ms, $T_a = 200$ ms periodic task t_3 : $C_3 = 30$ ms, $T_3 = 300$ ms

The context switch time is included in the indicated CPU times. Use the Generalized Utilization Bound Theorem to determine if this task set is schedulable.

3. Given two tasks T_1 and T_2 with two shared data structures protected with binary semaphores S_1 and S_2 , show how the *priority ceiling protocol* prevents mutual deadlock and guarantees that a high-priority task will be blocked by at most one critical section of any lower priority task.