
RDCS 423 - Real-time Distributed Computer Systems rm4/p1

REAL-TIME DISTRIBUTED SYSTEMS
DETAILED DESIGN METHODOLOGY (3)

TASK STRUCTURING

The task structuring step is required for all real-time concurrent system
design approaches (and it is common to the DARTS and COMET
approaches). The task structuring criteria are based on heuristics
determined through substantial experience with developing concurrent real-
time systems.

Task Structuring Issues

The system can be behaviourally modelled as a set of concurrent active
objects (or tasks, threads, processes, etc) and functions which communicate
via discrete event flow and data flows (messages). The purpose of task
structuring is to formalize the concurrent task boundaries and the
communication/synchronization between them.

The primary basis for task structuring is the asynchronous nature of objects in
the system, objects in the behavioural system model that can execute
sequentially are grouped into one task, whereas objects that must execute
concurrently are mapped to a single task.

Task Structuring Criteria

There are five main categories of task structuring criteria and any task should
be structured using criteria 1, 3 and 4, or criteria 2, 3 and 4:

1. I/O task structuring criteria - examines how device I/O objects are
mapped to I/O tasks and when an I/O task is activated.

2. Internal task structuring criteria - examines how internal objects and
functions are mapped to internal tasks and when an internal task is
activated.

3. Task priority criteria - examines priority assignment to tasks.
RDCS 423 - Real-time Distributed Computer Systems rm4/p2

4. Task clustering criteria - examines whether and how objects should be
grouped into tasks.

5. Task inversion criteria - used for merging tasks to reduce overhead.

There are two stages of application of these criteria - the first three are used
to directly map objects in the analysis model to tasks in the design model,
and the last two are used when refining the design model to meet various
performance criteria. Once the tasks are defined, the task interfaces are
specified.

I/O Task Structuring Criteria

Generally behavioural models do not consider hardware related
characteristics regarding I/O devices, but this information is important to
determine the characteristics of task interfaces to the devices.

I/O device characteristics:
• asynchronous - active or interrupt driven
• passive - read/write on a polled or demand basis
• communications link

Data characteristics:
• discrete data - boolean or finite number of values
• continuous data - infinite values so usually polled

Passive device characteristics:
• sample the device on demand - sufficient to meet consumer needs?
• poll on a periodic basis - polling frequency?

Asynchronous I/O Device Interface Tasks

Each asynchronous I/O device has a task to interface to it (this simple
concept can be traced back to Dijkstra, 1968 on CSP and Brinch Hansen,
1973 on OS design). An asynchronous device I/O task is usually
implemented as an OS device driver task, which is activated by a low-level
interrupt handler (or in some cases directly by the hardware).

RDCS 423 - Real-time Distributed Computer Systems rm4/p3

Example - Cruise Control Lever object

The cruise control lever is an asynchronous input device, so Cruise Control
Lever is mapped to an asynchronous device input task. The task is activated
by a Cruise Control Interrupt, then reads the input, converts to the internal
format and sends it to the Cruise Control task as a message.

Periodic I/O Device Interface Tasks

These tasks deal with passive I/O devices that are used on a polled basis,
i.e. they are timer activated. They are commonly used for acquiring data
from passive sensors.

Example - Engine object

The current value of the engine sensor is read and an Engine Status
Message created at every Timer Event.

Concurrent Collaboration

Collaboration Diagram

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p4

Timing considerations for periodic I/O tasks are influenced by the rate of
change of the input data, e.g. for engine status sensing a 1 sec polling
frequency may be adequate whereas for automotive brake sensing a 100
msec polling frequency may be required.

Note that it may be better to support an analogue input on a periodic polling
basis rather than as an asynchronous device → as the rapid changing of
values may generate an excessive load. For a digital device, a periodic input
task is likely to consume more overhead (since the value of the sensor being
monitored may not have changed since the last sample).

Passive I/O Interface Tasks

These tasks deal with passive I/O devices that are accessed on an a demand
basis. They are commonly used for outputting data to passive output
devices where there may be some benefit in overlapping output with the
computational task that produced that output. They are less commonly used
where overlapping of input data with the task that consumes that data is
beneficial

Example - Sensor statistics display

Resource Monitor Tasks

Devices that receive requests from multiple sources should have a resource
monitor task to manage the requests even if the device is passive →
controls the sequencing of requests and ensures data integrity, e.g.
simultaneous output request to a printer.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p5

Internal Task Structuring Criteria

Periodic Tasks: every internal periodic activity is a candidate for
structuring as a separate periodic task that is activated by a timer event, e.g:

The Distance Timer task is activated and requests the Distance object to
read the Shaft Rotation Count and Calibration Constant to calculate the
distance traveled periodically.

Asynchronous Tasks: an object that executes a function on demand is
structured as a separate asynchronous task, i.e. it is activated by an external
event or message, e.g. Cruiser object:

The Cruiser object is activated on demand by the arrival of Cruise Control
Command messages. It reads the Desired Speed and Current Speed and then
computes the required Throttle Value.

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p6

Control Tasks: because state-dependent control objects execute a
statechart they are usually sequential so they can be executed by single
control task, e.g. Cruise Control task:

User Interface Tasks: because a user's interaction is a set of sequential
operations, they can also be handled by a user interface or user role task. A
user role task usually interfaces with the user through standard OS
interfaces (since it is usually not necessary to develop special purpose I/O
tasks to handle standard devices).

Different user interactions with the system may be supported by multiple
user role tasks, e.g. an Operator Interface object in a factory application
with multiple windows - examine factory status in one window and
acknowledge alarms in another window.

Multiple tasks of the same type: there may be several objects of the same
type → map to several tasks of the same type, e.g. a multiple elevator
controller would have multiple Elevator Controller control tasks (which
maintain identical statecharts with different state information).

Where there are too many objects of the same type to permit a direct
mapping to multiple tasks, a task inversion strategy is followed.

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p7

Task Priority Criteria

Task priority assignment influences task structuring by identifying and
separating out high-priority time-critical tasks. Generally control tasks
(executing statecharts) and asynchronous I/O tasks are assigned a high
priority. Non-time critical computationally-intensive tasks usually run at
low priority. Assignment of priorities at this stage in the design
methodology is preliminary and uses fairly coarse levels.

Task Clustering Criteria

Concepts: the module cohesion or clustering concept has long been used in
Structured Design approaches to identify the strength of bonding of the
functions contained within a module. In DARTS, the task cohesion criteria
were used to determine which objects and functions (i.e. the transforms in
the behavioural model) could be grouped into a single task.

The behavioural model approach to hierarchical decomposition can lead to a
large number of objects and functions which are potentially concurrent →
can lead to a large number of tasks with associated complexity and
execution overhead.

Task clustering or cohesion criteria provide a way of assessing the
concurrent nature of the objects and how they should be grouped together
e.g. two objects that are constrained so they cannot execute concurrently →
no advantage in locating them in separate tasks.

Temporal Clustering: some objects may be activated by the same event
even though there is no sequential dependency between them → objects
can be grouped into the same task with an arbitrary execution order.

Example: monitor brake and engine sensors in the cruise control
application.

RDCS 423 - Real-time Distributed Computer Systems rm4/p8

If the sensors where asynchronous I/O devices → each would have a
separate asynchronous I/O task. If the sensors are passive then two tasks,
Monitor Brake and Monitor Engine, could be used that periodically poll
(say every 100 msec) these sensors → combine into one task.

Issues in Temporal Clustering: there are tradeoffs to consider when
structuring objects into a temporally clustered task:

1. Where one task is more time critical than another → map to separate
tasks to allow different priorities.

2. If tasks are likely to be executed on different processors → should be
assigned to separate tasks.

3. Preference in temporal clustering should be given to tasks that are
functionally related and likely to be of equal importance from a
scheduling viewpoint.

4. Even if two tasks have different periods, then can be combined into a
temporally clustered task provided the periods are multiples of one
another, e.g. one I/O task samples sensor A every 50 msec and another
I/O task samples sensor B every 100 msec → the temporally clustered
task has a period of 50 msec but samples sensor A every activation and
sensor B on every second activation.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p9

5. One group of tasks may be more important than another even if they
have a common multiple in their periods → so should be left in a
higher priority task, e.g: in the cruise control problem the two tasks
Monitor Brake and Check Maintenance Need may have periods of 100
msec and 10 sec respectively → could be combined in a temporally
clustered task but Monitor Brake is a far more important function.

An example where temporal clustering is deliberately taken to an extreme is
the Cyclic Executive style of real-time programming [Glass, 1983], i.e. all
periodically invoked objects are grouped into one task with different
periodic events activating different objects. It has been shown that this
approach usually increases the cost of the system and is very difficult to
maintain in practice (but is not that uncommon in some implementations).

Sequential Clustering:

Objects that are sequentially linked may be combined in one sequentially
clustered task, e.g:

The tasks Report Generator and DisplayInterface are sequentially clustered
into a single task.

Issues:

• Where the last task in a sequence does not send an intertask message
→ terminates a potentially sequentially clustered group of tasks so
could be sequentially clustered.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p10

• If the next task in a sequence also receives input from another source
→ should be structured in a separate task.

• If the next task in the sequence could hold up the preceding task so that
it could miss an input or a state change → should be structured as a
separate lower priority task.

• If the next task in the sequence is of a lower priority and follows a
time-critical task → should be structured as a separate task.

Control Clustering: this criterion can be used to group together objects in
a single control task and objects that execute actions triggered by the
statechart or activities enabled by the statechart:

1. State-dependent actions: an action implemented as an operation on

another object that is triggered by a state transition and it starts and
completes during the state transition → the object can also be included
in the control task if all operations are executed within the thread of
control of the control task.

2. State-dependent activities that are enabled (disabled) by the control

object due to a state transition and disabled (enabled) by another state
transition → because the control object and activity execute
concurrently it should be structured as a separate task.

3. State-dependent activities that are triggered by the control object due to

a state transition and execute for the duration of that state - several
cases are possible:

a) If the activity is deactivated by the control object so both could
be active concurrently → the activity should be structured in a
separate task.

b) Where the activity is the one that recognizes that it is time for a
state change it will send an event to the control object, and if it is
the only event that causes a state change → the activity could
be clustered with the control object.

RDCS 423 - Real-time Distributed Computer Systems rm4/p11

c) Where the control object could be activated by a number of
events then the activities causing them should be structured as a
separate task.

4. If there are messages from source objects sent to the control object as

events that cause it to change state, then the source object may be
clustered with the control object following the sequential clustering
criteria.

Example: ATM control

The ATM Control
object executes the
statechart and two
actions are the
triggering of Dispense
Cash & Print Receipt.

From the statechart, both
actions start and complete
execution during a state
transition → group both the
output interface objects into
the ATM controller task via
the control clustering criteria.

Mutually Exclusive Clustering: this criteria applies where a number of
tasks are related but can only be executed one at a time so they can be
grouped into a single task.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p12

Example: Cruise Control

The three algorithm objects, Acceleration, Cruiser and Resumption are
enabled on entry to a state and disabled on exit, so they are candidates for
separate tasks. However these activities are all mutually exclusive and there
is no advantage is structuring these objects as separate tasks:

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p13

Task Architecture Development

Guidelines for applying the task structuring criteria in the following
sequence:

1. Device interface tasks - structure the device interface objects that

interact with the external world into: asynchronous I/O, periodic I/O,
passive I/O, resource monitor or temporally clustered periodic I/O
tasks.

2. Control tasks - each state-dependent control object and all interacting
objects that interface to it, are analyzed. Any object executing an
action triggered by the control task can often be structured into the
control task, whereas any activity enabled and later disabled by the
control task should be structured in a separate task. If there are multiple
control objects of the same type then their possible integration in one
task should be examined.

3. Periodic tasks - analyze the internal periodic activities and if any are
triggered by the same event or are sequentially executed → can be
grouped in the same task.

4. Other internal tasks - look for any internal tasks that can be grouped
into a task by the temporal, sequential or mutually exclusive clustering
criteria.

In some cases multiple criteria need to be applied, e.g. consider a device
interface object that is assigned to a device interface task initially, but:

• suppose that it is activated by a control object, and it is synchronously
performed during a state transition → re-examine the initial task
structuring decision as the device interface object could now be
combined in control task via control clustering criteria.

• suppose the device interface object interacts with a high-priority task as
well → re-examine again as it should be a separate task via temporal
clustering criteria.

RDCS 423 - Real-time Distributed Computer Systems rm4/p14

The Initial Concurrent Collaboration Diagram

Based on the task structuring criteria just examined, an initial concurrent
collaboration diagram (or Task Architecture Diagram) can be produced
which identifies all tasks in the system, but has yet to define detailed task
interfaces, e.g:

Design Restructuring using Task Inversion

The task inversion approach was first used in the Jackson Structured
Development (JSD) method, and is a set of guidelines for reducing the
number of tasks in a systematic manner. It is a design restructuring
approach which is applied where there is some concern about the system
overhead caused by a large number of tasks.

Multiple Instance Task Inversion: the conventional task structuring
guideline for handling several objects of the same type is to create separate
tasks of the same type → problem is that this may lead to unacceptably
high overhead.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p15

Task inversion replaces all these tasks by one task, but maintains a separate
data structure for each object, e.g. the Elevator Controller handles multiple
elevators:

Sequential Task Inversion: used mostly where there is tightly-coupled
communication between a producer task and consumer task → can
combine tasks or "invert" the producer task with respect to the consumer
task, e.g. the Cruise Control problem:

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p16

Temporal Task Inversion: usually used where two or more periodic tasks
are combined into one task, so that the task has a scheduling procedure
activated by a single timer event. Grouping objects that are not functionally
related is not desirable from a design viewpoint, but is justified when
optimization is necessary, e.g. the Cruise Control problem:

Two temporally clustered periodic I/O tasks, Auto Sensors and Calibration
are combined into one temporally inverted task which is activated by the
same timerEvent. The task checks which procedure is to be run.

Task Communication and Synchronization

The interfaces between tasks are simple messages on the initial analysis
model collaboration diagram. These messages must be mapped to task
interfaces in the form of message communication, event synchronization, or
communication via information hiding objects.

Message Communication:

• Loosely-coupled (asynchronous) - consumer employs a message queue

and no response is required from the consumer, e.g. in the Cruise
Control system the CruiseControlLeverInterface sends a message to the
CruiseControl task without waiting. The CruiseControl task is then
able to respond to messages from other sources.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p17

• Tightly-coupled (synchronous) with reply - the producer task waits for

reply from the consumer task with no message queue, e.g. the ATM
system:

The ATMClient task is unable to continue until the ATM Transaction is
processed by the BankServer.

• Tightly-coupled (synchronous) without reply - the producer does not

wait for a reply from the consumer task, e.g. a sensor statistics
processor and display task:

Note that messages are not queued because there is no reason to
compute sensor statistics if they cannot be displayed. Also as the
SensorStatisticsAlgorithm task is only suspended until the
SensorStatisticsDisplayInterface accepts the message → potential to
overlap execution of the former task (compute bound) and the later
task (I/O bound).

[Gomaa, 2000]

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p18

• Event Synchronization - there are three types: external event
synchronization, internal event synchronization, and timer event
synchronization, e.g. an external event (typically a hardware interrupt):

 Timer events and internal events are similarly mapped to asynchronous

messages without inputs.

Task Communication via Information Hiding Objects: tasks can
exchange information via accessing shared information hiding objects, e.g.
the SensorStatisticsAlgorithm task accesses sensorData placed by the
SnesorInterface task via the SensorDataRepository:

Note that although this is shown notationally as a synchronous message,
accessing passive objects is implemented as operations on the object with
appropriate send and return parameters.

Revised Task Architecture

The concurrent collaboration diagram can now be revised to show the
complete task architecture: all concurrent objects and the interfaces between
them e.g. the ATM bank system:

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p19

Task Behaviour Specification

The Task Behaviour Specification (TBS) is usually written in a structured
form and contains the following information:

a) Task interface - includes a definition of message inputs and outputs,
i.e. type of interface, name and parameters; definition of events, i.e.
type of event, event name; external inputs and outputs.

b) Task structure - the task structuring criterion used to design the task
and the mapping from the analysis model.

c) Timing characteristics - frequency of activation (period Ti), estimated
execution time for task (Ci) and all paths through it.

d) Relative priority - priority in relation to other tasks.

e) Event sequencing logic - how the task responds to messages or events,
i.e. what outputs are generated → could be in the form of a statechart.

f) Error handling - possible errors detected.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p20

Example - TBS from ATM Bank System

TASK: Bank Server
a) TASK INTERFACE:

TASK INPUTS:
Tightly Coupled Message Communication with Reply
Messages:
1) validatePIN

Input Parameters: cardID, PIN
Reply: PINValidationResponse

2) withdraw
Input Parameters: cardID, account#, amount
Reply: withdrawalResponse

3) query
Input Parameters: cardID, account#
Reply: queryResponse

4) transfer
Input Parameters: cardID, fromAccount#, toAccount#,

amount
Reply: transferResponse

TASK OUTPUTS:
Message replies as above

b) TASK STRUCTURE:
Criterion: Sequential Clustering

Objects mapped to task:
BankTransactionServer, PINValidationTransactionManager,
WithdrawalTransactionManager, QueryTransactionManager,
TransferTransactionManager,CheckingAccount,SavingsAccount,
DebitCardAccount, TransactionLog

c) TIMING CHARACTERISTICS:
Activation: Asynchronous – message arrival from clients
Worst case inter-arrival time = 100 msec
Average inter-arrival time > 1 second
Execution time Ci: 10 msec per message

d) PRIORITY:
High – needs to be responsive to incoming messages

e) TASK EVENT SEQUENCING:
See statechart or pseudocode description

f) ERRORS DETECTED:
Any unrecognized messages

RDCS 423 - Real-time Distributed Computer Systems rm4/p21

Detailed Task Design Issues

Tasks typically contain a mix of internal object types. The task (which is an
active object) is activated by an external or internal event, or a timer event.
It then accesses the internal passive objects (that have been instantiated
from a class). There are two possibilities:

• Object is only accessed by one task → it can be nested in that task

• Object is accessed by more than one task → it must reside outside
the task (and the object must provide its own synchronization
capabilities).

A composite task encapsulates a number of nested objects, and can be
shown on the concurrent collaboration diagram. The same clustering
criteria that are used to decide on object clustering in tasks are used to
decide on the extent of object nesting in tasks, e.g. device interface objects
included in the only task that accesses them:

The AutoSensors task temporally clusters the coordinating object
AutoSensorsMonitor which accesses the device interface objects and
produces the state information required by the AutoControl task.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p22

Another example is the clustering of a control object (a state-dependent
object) with output device interfaces:

The ATMControl object executes a statechart in response to the
ATMCoordinator object which outputs to the output device interface
objects.

The aim in creating composite tasks is to separate concerns of how a device
is accessed in the device interface objects from when the device is accessed
in the task. Thus the device interface can be reused in different applications
by different types of task, and the task can use different types of devices by
changing the device interface.

Access Synchronisation

When objects are located outside tasks and can be accessed by multiple
tasks, then synchronization must be built into the object (hence the class it
is instantiated from). A number of mechanisms can be used to implement
mutual exclusion, e.g. semaphores, mutexs, monitors. Some capabilities are
providing by the operating system, and others by the implementation
language. At the detailed design level, a pseudo-code description of the
synchronized data access operations is adequate.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p23

Inter-task Communications

Detailed design of inter-task communications can be done through the
specification of connector classes to encapsulate the implementation
mechanism of loosely and tightly-coupled message communications.

For example, neither Ada or Java provides loosely-coupled message
communications, so a Message Queue class can be used to provide a
dedicated connector class, e.g:

Other connector classes can also be defined to include buffers and
responses for tightly-coupled inter-task communications. Cooperating tasks
can then use the required instantiated connector objects for inter-task
communications.

Task Event Sequencing Logic

The final step in detailed task design is to define the behaviour of the object
in the task that is responsible for all message handling and event
sequencing (e.g. the coordinating object). These may defined in pseudocode
or a statechart diagram.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm4/p24

e.g. Event Sequencing Logic for the aProducer task using the connector
class defined earlier:

loop
Structure message with name and optional parameters
aConnector.send(message);

endloop;

e.g. Event Sequencing Logic for the aConsumer task using the connector
class defined earlier:

loop
aConnector.receive(message);
Extract message with name and optional parameters
case message of

messageType1:
objectA.operationX (optional parameters);

. . .

messageType2:
objectB.operationY (optional parameters);

. . .
endcase;

endloop;

Summary of COMET design methodology steps

1. Software Architecture design
• System and subsystem decomposition

2. Task Architecture design

• Clustering criteria

3. Object and class design (information hiding passive objects)
• Separation of concerns

4. Detailed task design

• Nesting passive objects into composite tasks
• Access synchronization of passive objects
• Detailed inter-task communications
• Event sequencing logic

