
RDCS 423 - Real-time Distributed Computer Systems rm3/p1

REAL-TIME DISTRIBUTED SYSTEMS
DETAILED DESIGN METHODOLOGY (2)

Software Architecture Design

The approach taken to decompose the system into subsystems, components,
interfaces and their interconnections is referred to as developing the
software architecture. Specific guidelines are required for concurrent,
real-time and distributed applications.

A number of architectural styles or patterns can be defined for this area:

1. Client/Server - simple service provider/multiple clients, e.g. ATM

banking system:

2. Layered Abstraction - simple interfaces at lower levels rising to complex
functionality, e.g. ISO network protocol stack.

3. Communicating Tasks - a network of concurrent tasks with separate

threads of control optionally sharing data.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm3/p2

System Decomposition

The general approach to system decomposition is guided overall by the
principle of information hiding and separation of concerns:
1. Subsystems need to be as independent of each other as possible - low

coupling
2. Linkages between objects in the subsystems should be high - high

cohesion
3. Once subsystems and their interfaces have been defined, detailed

subsystem design can proceed independently.
4. Use case object interaction models form the basis of subsystem design
5. Objects appearing in multiple use cases must be allocated to one

subsystem (the one with the strongest coupling to the object).

Subsystem Software Architecture

To determine the subsystems requires a transition from analysis to initial
design via integrating parts of the analysis model - all the collaboration
diagrams developed for each use case are combined into a consolidated
collaboration diagram. This phase was referred to in earlier OO
methodologies as "robustness analysis" but COMET emphasises the
dynamic analysis model through the message communication interfaces.

The consolidated collaboration diagram shows all message
communications: both the main and all alternative use-case sequences. If
the diagram becomes too complex then aggregate messages can be
substituted, e.g. Cruise Control Messages (with an associated directory) can
be used for the Cruise Control object.

Given a consolidated collaboration diagram, subsystems can be identified
and from these subsystem collaboration diagrams constructed, e.g. for the
ATM Banking system:

RDCS 423 - Real-time Distributed Computer Systems rm3/p3

A higher level system collaboration diagram can then be constructed which
hides the subsystems objects and interactions and only shows subsystems
and subsystem interactions, e.g:

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm3/p4

Subsystem Design Guidelines

The principles of information and separation of concerns also underpin
subsystem design guidelines:

1. Aggregate/Composite objects should be in the same subsystem
2. Geographically separated objects should be in different subsystems
3. Clients and Servers should be in different subsystems
4. User interfaces are usually separate subsystems
5. External objects should interface to only one subsystem
6. A control object and its entity and interface objects it controls should be

in the same subsystem.
7. Entity objects should be in the same subsystem as objects that update it.

Common Subsystem Types

1. Control - receives inputs, generates outputs and is usually state-

dependent, e.g:

2. Coordinator - usually where there are multiple control subsystems a

coordinator is required, e.g:

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm3/p5

3. Data Collection - a subsystem that collects raw data from the

environment and preprocesses it for use by other subsystems, e.g:

4. Data analysis - analyzes data, provides reports
5. Server - provides a service to other subsystems
6. User Interface - provides a display of system information and gathers

user input
7. System services - not application specific, but generic to the platform or

operating system

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm3/p6

Example: Bank ATM system

A typical three-tier client/server application:

Subsystem Decomposition - static modelling re-examination

The conceptual static model (with class diagrams obtained from
requirements analysis) developed earlier in the methodology can be
revisited with the consolidated collaboration diagram to review
instantiations of objects from classes and relationships between classes.
Association navigabilities can also be assigned or reviewed.

Distributed Architecture Design

In COMET, the approach is to provide a concurrent message-based design
that is highly configurable → the architecture is highly portable across
different system configurations and platforms.

A component-based development approach assists this aim by designing
each subsystem as a component (i.e. an active object with a well-defined
interface). It should be designed to be self-contained and be reusable.

Designing Distributed Subsystems

1. Decompose into subsystems that can potentially execute on separate

nodes (use subsystem structuring criteria - define components and
interfaces)

2. Decompose subsystems into concurrent tasks and information hiding
objects

3. Map instances of the design onto a distributed hardware configuration

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm3/p7

To design distributed subsystems, the consolidated collaboration diagrams
showing all systems objects and their interactions is the most useful for
decomposition. Objects are most generally geographically grouped into
composite subsystems, or logically/functionally grouped into aggregate
subsystems (which may span geographical locations), e.g:

Although the subsystem structuring criteria as defined earlier are used to
guide decomposition, additional criteria are also needed to specifically
guide decomposition into distributed subsystems:

1. Proximity to the physical data source - fast access to local data
2. Localized autonomy - receiving general direction, but provides lower

level control and monitoring
3. Performance - time-critical functions are confined to single nodes
4. Specialized hardware - interface has to be local, or provides dedicated

processing capability
5. User Interface & Servers (as mentioned in previous criteria)

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm3/p8

Designing Subsystem Interfaces

Essentially, two types can be used:
1. Loosely-coupled (asynchronous) messages - via FIFO queues or priority

message queues.
2. Tightly coupled (synchronous) messages - common in client/server

architectures (e.g. RPC or RMI)

Which are seen in various distributed communication patterns:
1. Subscription/Notification and Group messaging communications - one-

to-many (broadcast or multicast), e.g:

2. Object Broker communications - client/server intermediary providing

location transparency, e.g:

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm3/p9

3. Negotiated communications - common in multi-agent systems (client
agents act on behalf of a user to negotiate with servers), e.g:

4. Transaction based communications - usually indivisible operations on a
server (i.e. all operations are performed or none), e.g: two-phase commit
protocol:

Note where there may be some delay between the phases, it is usual to
prefix the protocol with a query only transaction followed by a reservation
transaction (with the two-phase commit).

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm3/p10

Server Subsystem Design & Data Distribution

The purpose of servers is usually to encapsulate some data abstraction
object(s) and provide a means of access to clients. The server can be either
be sequential or concurrent:

1. Sequential Server: simple client request response after invoking the

appropriate operations on the data abstractions, e.g:

2. Concurrent Server: where server demand is likely to be high, access must

be made concurrent with appropriate synchronisation between reader and
writer object via a coordinator, e.g:

Note that the service response is asynchronous and usually implemented as
a callback from the server to the client when the service request has been
met.

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm3/p11

Both sequential and concurrent server subsystems encapsulate centralized
data abstractions, but higher performance systems usually require some
form of data distribution as well.

In a distributed server, data collected locally is held locally and served
locally. For performance reasons, this data may need to be replicated in
more than one server. Data must then be updated at regular intervals to
ensure it is sufficiently up-to-date.

System Configuration

The final step in the COMET methodology is to map an instance of the
distributed application to a physical architecture (the target system):
1. Define component instances - components may have multiple instances

in the application and require unique IDs
2. Interconnect component instances - the architecture defines component

communications but component IDs may need to be exchanged.
3. Map component instances (logical nodes) to physical nodes.

Example: Distributed Elevator Control System

On the deployment diagram, each component instance is allocated to a
node:

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm3/p12

Testing Issues in Real-Time (and Distributed) Systems

Real-Time distributed software is critically dependent on the timing and
sequencing of inputs, and as these typically come from the physical world
there are many possible values and combinations of inputs possible → a
very large number of test cases.

Real-Time distributed software (particularly when some parts are
embedded) is also usually more complex than conventional software due to
the requirement to operate without human intervention → must incorporate
a larger number of exception handling routines to support recovery from
unexpected events → complexity also results in a large number of test
cases.

The operation of real-time distributed software across various processing
nodes concurrently → interactions between the processors may be highly
non-deterministic → also produces a very large number of test cases from
all the possible inter-leaving and sequencing of messages between
processors.

Additional variations in the performance of the underlying communications
network also impacts the timing and sequencing of messages between
processors.

Apart from analysis based testing methods, either from performance
analysis of the design, or formal correctness proofs, systematic testing of a
manageable set of statistically selected test cases is usually required so that
probabilistic measures of software failure can be inferred from limited
testing.

The most widespread testing technique is to construct a physical
environment simulator to generate as many realistic possible variations of
typical inputs as possible to test the real-time distributed system. The
simulator may also be able to produce conditions which are not easily
created in the physical world but represent scenarios that the system must be
able to handle.

RDCS 423 - Real-time Distributed Computer Systems rm3/p13

In terms of management of the testing process, the breakdown into phases
of unit testing and integration testing is still applicable, e.g. from the
Unified Process:

Unit testing is largely able to following conventional software engineering
approaches (i.e. driven by generating test cases from use case requirements
scenarios since units are self-contained and shouldn’t require operation
across distributed nodes or exhibit complex temporal interactions with the
physical world (otherwise unit decomposition has not been very good!).

Integration testing requires that tests include:

• Temporal variations between software units executing concurrently
on single processor nodes (which involves the scheduler and inter-
task communications).

• Temporal variations between message delays for software units
messaging each other on different distributed nodes.

Integration testing is largely design architecture driven through selection
and perturbation of critical event sequences since testing must also confirm
that all units conform to the architectural design assumptions. Integration
testing must also cover robustness of the system as the integration load is
increased on the hardware architecture.

System testing largely tests against the requirements and takes a more
external view that overall performance requirements are met.

[Rational, 2000]

