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REAL-TIME DISTRIBUTED SYSTEMS 
DETAILED DESIGN METHODOLOGY (2) 
 
Software Architecture Design 
 
The approach taken to decompose the system into subsystems, components, 
interfaces and their interconnections is referred to as developing the 
software architecture. Specific guidelines are required for concurrent, 
real-time and distributed applications. 
 
A number of architectural styles or patterns can be defined for this area: 
 
1. Client/Server - simple service provider/multiple clients, e.g. ATM 

banking system: 
 

 
 

2. Layered Abstraction - simple interfaces at lower levels rising to complex 
functionality, e.g. ISO network protocol stack. 

 
3. Communicating Tasks - a network of concurrent tasks with separate 

threads of control optionally sharing data. 
 

[Gomaa, 2000] 
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System Decomposition 
  
The general approach to system decomposition is guided overall by the 
principle of information hiding and separation of concerns: 
1. Subsystems need to be as independent of each other as possible - low 

coupling 
2. Linkages between objects in the subsystems should be high - high 

cohesion 
3. Once subsystems and their interfaces have been defined, detailed 

subsystem design can proceed independently. 
4. Use case object interaction models form the basis of subsystem design 
5. Objects appearing in multiple use cases must be allocated to one 

subsystem (the one with the strongest coupling to the object). 
 
Subsystem Software Architecture 
 
To determine the subsystems requires a transition from analysis to initial 
design via integrating parts of the analysis model - all the collaboration 
diagrams developed for each use case are combined into a consolidated 
collaboration diagram. This phase was referred to in earlier OO 
methodologies as "robustness analysis" but COMET emphasises the 
dynamic analysis model through the message communication interfaces. 
 
The consolidated collaboration diagram shows all message 
communications: both the main and all alternative use-case sequences. If 
the diagram becomes too complex then aggregate messages can be 
substituted, e.g. Cruise Control Messages (with an associated directory) can 
be used for the Cruise Control object. 
 
Given a consolidated collaboration diagram, subsystems can be identified 
and from these subsystem collaboration diagrams constructed, e.g. for the 
ATM Banking system: 
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A higher level system collaboration diagram can then be constructed which 
hides the subsystems objects and interactions and only shows subsystems 
and subsystem interactions, e.g: 
 

 
 
 

[Gomaa, 2000] 

[Gomaa, 2000] 

RDCS 423 - Real-time Distributed Computer Systems rm3/p4 

Subsystem Design Guidelines 
 
The principles of information and separation of concerns also underpin 
subsystem design guidelines: 
 
1. Aggregate/Composite objects should be in the same subsystem 
2. Geographically separated objects should be in different subsystems 
3. Clients and Servers should be in different subsystems 
4. User interfaces are usually separate subsystems 
5. External objects should interface to only one subsystem 
6. A control object and its entity and interface objects it controls should be 

in the same subsystem. 
7. Entity objects should be in the same subsystem as objects that update it. 
 
Common Subsystem Types 
 
1. Control - receives inputs, generates outputs and is usually state-

dependent, e.g: 
 

 
 
2. Coordinator - usually where there are multiple control subsystems a 

coordinator is required, e.g: 
 
 
 

[Gomaa, 2000] 
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3. Data Collection - a subsystem that collects raw data from the 

environment and preprocesses it for use by other subsystems, e.g: 

 
 
4. Data analysis - analyzes data, provides reports 
5. Server - provides a service to other subsystems 
6. User Interface - provides a display of system information and gathers 

user input 
7. System services - not application specific, but generic to the platform or 

operating system 
 

[Gomaa, 2000] 

[Gomaa, 2000] 
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Example:  Bank ATM system 
 
A typical three-tier client/server application: 
 

 
 
 
Subsystem Decomposition - static modelling re-examination 
 
The conceptual static model (with class diagrams obtained from 
requirements analysis) developed earlier in the methodology can be 
revisited with the consolidated collaboration diagram to review 
instantiations of objects from classes and relationships between classes. 
Association navigabilities can also be assigned or reviewed. 
 
 
Distributed Architecture Design 
 
In COMET, the approach is to provide a concurrent message-based design 
that is highly configurable → the architecture is highly portable across 
different system configurations and platforms. 
 
A component-based development approach assists this aim by designing 
each subsystem as a component (i.e. an active object with a well-defined 
interface). It should be designed to be self-contained and be reusable. 
 
Designing Distributed Subsystems 
 
1. Decompose into subsystems that can potentially execute on separate 

nodes (use subsystem structuring criteria - define components and 
interfaces) 

2. Decompose subsystems into concurrent tasks and information hiding 
objects 

3. Map instances of the design onto a distributed hardware configuration 

[Gomaa, 2000] 
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To design distributed subsystems, the consolidated collaboration diagrams 
showing all systems objects and their interactions is the most useful for 
decomposition. Objects are most generally geographically grouped into 
composite subsystems, or logically/functionally grouped into aggregate 
subsystems (which may span geographical locations), e.g:  
 

 
 
Although the subsystem structuring criteria as defined earlier are used to 
guide decomposition, additional criteria are also needed to specifically 
guide decomposition into distributed subsystems: 
 
1. Proximity to the physical data source - fast access to local data 
2. Localized autonomy - receiving general direction, but provides lower 

level control and monitoring 
3. Performance - time-critical functions are confined to single nodes 
4. Specialized hardware - interface has to be local, or provides dedicated 

processing capability 
5. User Interface & Servers (as mentioned in previous criteria) 
 
 
 
 

[Gomaa, 2000] 
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Designing Subsystem Interfaces 
 
Essentially, two types can be used: 
1. Loosely-coupled (asynchronous) messages - via FIFO queues or priority 

message queues.  
2. Tightly coupled (synchronous) messages - common in client/server 

architectures (e.g. RPC or RMI) 
 
Which are seen in various distributed communication patterns: 
1. Subscription/Notification and Group messaging communications - one-

to-many (broadcast or multicast), e.g:  

 
 
2. Object Broker communications - client/server intermediary providing 

location transparency, e.g: 
 

 
[Gomaa, 2000] 

[Gomaa, 2000] 
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3. Negotiated communications - common in multi-agent systems (client 
agents act on behalf of a user to negotiate with servers), e.g: 
 

 
 

4. Transaction based communications - usually indivisible operations on a 
server (i.e. all operations are performed or none), e.g: two-phase commit 
protocol: 

Note where there may be some delay between the phases, it is usual to 
prefix the protocol with a query only transaction followed by a reservation 
transaction (with the two-phase commit). 
 
 
 
 

[Gomaa, 2000] 

[Gomaa, 2000] 
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Server Subsystem Design & Data Distribution 
 
The purpose of servers is usually to encapsulate some data abstraction 
object(s) and provide a means of access to clients. The server can be either 
be sequential or concurrent: 
 
1. Sequential Server: simple client request response after invoking the 

appropriate operations on the data abstractions, e.g: 
  
 

 
 
 
 
 
 
 
 
 
 
2. Concurrent Server: where server demand is likely to be high, access must 

be made concurrent with appropriate synchronisation between reader and 
writer object via a coordinator, e.g: 

 
 
 
 
 
 
 
 
 
 
 
Note that the service response is asynchronous and usually implemented as 
a callback from the server to the client when the service request has been 
met.  

[Gomaa, 2000] 

[Gomaa, 2000] 
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Both sequential and concurrent server subsystems encapsulate centralized 
data abstractions, but higher performance systems usually require some 
form of data distribution as well. 
 
In a distributed server, data collected locally is held locally and served 
locally. For performance reasons, this data may need to be replicated in 
more than one server. Data must then be updated at regular intervals to 
ensure it is sufficiently up-to-date. 
 
 
System Configuration 
 
The final step in the COMET methodology is to map an instance of the 
distributed application to a physical architecture (the target system): 
1. Define component instances - components may have multiple instances 

in the application and require unique IDs 
2. Interconnect component instances - the architecture defines component 

communications but component IDs may need to be exchanged. 
3. Map component instances (logical nodes) to physical nodes. 
 
 
Example:  Distributed Elevator Control System 
 
On the deployment diagram, each component instance is allocated to a 
node: 
 

 
 
 

[Gomaa, 2000] 
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Testing Issues in Real-Time (and Distributed) Systems 
 
Real-Time distributed software is critically dependent on the timing and 
sequencing of inputs, and as these typically come from the physical world 
there are many possible values and combinations of inputs possible → a 
very large number of test cases. 
 
Real-Time distributed software (particularly when some parts are 
embedded) is also usually more complex than conventional software due to 
the requirement to operate without human intervention → must incorporate 
a larger number of exception handling routines to support recovery from 
unexpected events → complexity also results in a large number of test 
cases. 
 
The operation of real-time distributed software across various processing 
nodes concurrently → interactions between the processors may be highly 
non-deterministic → also produces a very large number of test cases from 
all the possible inter-leaving and sequencing of messages between 
processors.  
 
Additional variations in the performance of the underlying communications 
network also impacts the timing and sequencing of messages between 
processors. 
 
Apart from analysis based testing methods, either from performance 
analysis of the design, or formal correctness proofs, systematic testing of a 
manageable set of statistically selected test cases is usually required so that 
probabilistic measures of software failure can be inferred from limited 
testing. 
 
The most widespread testing technique is to construct a physical 
environment simulator to generate as many realistic possible variations of 
typical inputs as possible to test the real-time distributed system. The 
simulator may also be able to produce conditions which are not easily 
created in the physical world but represent scenarios that the system must be 
able to handle.  
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In terms of management of the testing process, the breakdown into phases 
of unit testing and integration testing is still applicable, e.g. from the 
Unified Process: 
 

        
 
Unit testing is largely able to following conventional software engineering 
approaches (i.e. driven by generating test cases from use case requirements 
scenarios since units are self-contained and shouldn’t require operation 
across distributed nodes or exhibit complex temporal interactions with the 
physical world (otherwise unit decomposition has not been very good!). 
 
Integration testing requires that tests include: 

•  Temporal variations between software units executing concurrently 
on single processor nodes (which involves the scheduler and inter-
task communications). 

•  Temporal variations between message delays for software units 
messaging each other on different distributed nodes.  

 
Integration testing is largely design architecture driven through selection 
and perturbation of critical event sequences since testing must also confirm 
that all units conform to the architectural design assumptions. Integration 
testing must also cover robustness of the system as the integration load is 
increased on the hardware architecture. 
 
System testing largely tests against the requirements and takes a more 
external view that overall performance requirements are met. 

[Rational, 2000] 


