
RDCS 423 - Real-time Distributed Computer Systems rm2/p1

REAL-TIME DISTRIBUTED SYSTEMS
DETAILED DESIGN METHODOLOGY

We consider one methodology in detail that combines many of the
best practice elements of the RTDS design methodologies
developed over the last two decades.

COMET (Concurrent Object Modelling and architectural
design mEThod, Gomaa 2000)

A highly iterative OO software development process based on use cases:

• Requirements Modelling: functional requirements are defined in terms of

use cases - can use throwaway prototyping to refine.

• Analysis Modelling: static (structural relationships between classes) and

dynamic models (interactions between objects and state dependent
behaviour) are developed.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm2/p2

• Design Modelling: software architecture describes the subsystems and
how they are structured and interact. For concurrent systems the
emphasis is on tasking in addition to OO implementation issues.

• Incremental Software Construction: system subset selection for

construction by use cases which includes analysis, design and unit test.

• Incremental Software Integration: integration testing between units

(focussing on interfaces) which forms an incremental prototype (iterate if
problems).

• System testing: functional testing against specifications.

All these steps are very comparable with:

• Unified Software Development Process (Rational)

• Spiral Model (Boehm).

Focus on the elements of the process that distinguish RTDS methodologies
from standard Software Engineering approaches:

• Highly similar in the requirements modelling and static analysis

modeling phases

• Variations and change in emphasis shows up in dynamic modelling and

architectural modeling phases

RDCS 423 - Real-time Distributed Computer Systems rm2/p3

Dynamic Modelling

In an OO design approach, Dynamic (or Behavioural Modelling) emphasis
is on the inter-object interactions or intra-object interactions via state-
dependent execution.

In UML, interaction diagrams (collaboration or sequence diagrams) focus
on messages between objects, and dynamic analysis is used to construct
models of the message passing between objects.

Messages can be seen as an event plus message or event attributes which
are passed between objects (and then used as events to initiate state-
dependent transitions if appropriate for that object).

message = event (message attributes)

Investigating the sequence of message passing or events has been referred
to as event sequence analysis in previous approaches.

Collaboration (or Sequence) diagrams are developed from use case
scenarios and show all message passing and interacting objects, e.g:

Stereotypes are used to distinguish object (or class) types.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm2/p4

Similar information can be shown on a sequence diagram:

Of note, in the analysis phase no assumptions about mapping messages to
object operations are made or when objects are active or inactive. Different
approaches place a different emphasis on the different diagrams, e.g.
COMETs preference is for collaboration diagrams to aid in the architectural
design phase.

Message labels can be further complicated by the inclusion of sequence
numbers, recursion indicators and clauses and condition clauses:

[message sequence number] [recurrence indicator] [recurrence clause]
[condition clause] message name [(message arguments)]

e.g. 1*[j:=1,n] [x > 0] message1(argument1, ...)

The message sequence number can optionally be hierarchical and include
letters to indicate the use case it is associated with.

A message sequence description may also be developed to supplement the
collaboration or sequence diagram to detail what messages are passed
between objects and what receiving objects do when the various messages
arrive in the indicated sequence, e.g. identify object attributes that are
accessed.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm2/p5

Dynamic Analysis

The purpose of dynamic (or behavioural) analysis is to determine how the
objects interact with each other to perform the use cases. This analysis
might show a need for additional objects and/or interactions. Dynamic
analysis may either be non-state-dependent or state dependent, i.e. outputs
may depend on more than just actor inputs but prior events. For RTD
systems state-dependent analysis is typically required, but consider the
simpler type first:

Non-state-dependent dynamic analysis:

1. Determine interface objects – identify the actors initiating the use case
and the external interface the interface object interacts with.

2. Determine internal objects – identify all internal control and entity
system objects participating in the use case.

3. Determine object collaboration – identify all interactions between
internal objects and develop the collaboration or sequence diagrams.

4. Consider alternative sequences – exception or error handling.

State-dependent dynamic analysis:

1. Determine interface objects.
2. Determine state-dependent control object – responsible for executing

the state diagram.
3. Determine other internal objects.
4. Determine object collaboration.
5. Determine state diagram execution
6. Consider alternative sequences

The main difference is that messages arriving at a state-dependent control
object causes state-transitions on the statechart, which then generates
actions which either may become events (hence messages) for other control
objects, or actions/activities for the initiating control object.

State diagram execution may be based on an earlier determined statechart
which in the dynamic analysis phase needs to be refined and/or confirmed.

RDCS 423 - Real-time Distributed Computer Systems rm2/p6

State Diagram Development

Given typical scenarios from use cases developed in the requirements
modeling phase, each external event in the scenario causes a transition to a
new state. Associated with that transition may be some actions, and
associated with each state may be some activities on entry, exit, etc.

Each event sequence through the scenario should be able to be traced
through the execution of the developing statechart. All alternative event
sequence paths corresponding to all scenarios of the use case are
considered.

Example: Cruise Control system – Control Speed use case state diagram
development

Actor: Driver
Summary: This use case describes the automated cruise control system,
given the driver inputs via the cruise control lever, brake, and engine
external input devices.
Precondition: Driver has switched on the engine and is operating the car
manually.
Description:
A typical abbreviated scenario is:

1. Driver moves the cruise control lever to ACCEL and holds it there,
and the system initiates automated acceleration.

2. Driver releases the cruise control lever to cruise at constant speed, and
the system starts maintaining the speed of the case at cruising speed
which is stored for future reference.

3. Driver presses the brake to disable cruise control so that it is then
under manual control.

4. Driver moves the cruise control lever to RESUME to resume cruising
at the previously stored cruising speed.

5. When the system detects cruising speed has been reached, it stops
automatic acceleration (or deceleration) and maintains cruising speed.

6. Driver moves the cruise control lever to the OFF position which
disables cruise control and returns the car to manual operation.

7. Driver stops the car and switches of the engine

RDCS 423 - Real-time Distributed Computer Systems rm2/p7

Alternatives:
The following are the alternative external input events:

1. Cruise control lever events: ACCEL, CRUISE, RESUME, OFF
(where the CRUISE position is the default central position of the
lever).

2. Brake system events: Brake Pressed and Brake Released (automated
cruise control is only possible after the brake has been released).

3. Engine system events: Engine On and Engine Off (engine off disables
any automated control system activity).

Postcondition: Car is stationary with the engine off.

Statechart Development

The Idle state is the initial statechart state, and the Initial state is reached
when the engine is switched on (which is the precondition of the use case).
The following external events then occur in the scenario which are mapped
to the statechart shown below:

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm2/p8

1. ACCEL cruise control event – providing the brake is off (which
becomes a condition) a transition is made to the Accelerating state to
accelerate the vehicle so an Increase Speed activity is enabled.

2. CRUISE cruise control event - the cruise control lever is released
which cause a transition to the Cruising state. This also initiates the
following actions:

- automatic acceleration stops, so the Increase Speed activity is
disabled

- the cruising speed is stored through the Select Desired Speed
action

- vehicle speed is maintained through enabling the Maintain
Speed activity

3. BRAKE pressed – the Maintain Speed activity must be disabled and a
transition is taken to the Cruising Off state.

4. RESUME cruise control event – providing the brake is off a transition
is made to the Resuming state and the Resume Cruising activity is
enabled (which initiates acceleration or deceleration towards the
previously stored cruising speed).

5. When the Resuming Cruising activity has reached the stored cruising
speed, this activity can be disabled, the Maintain Speed activity can be
enabled, and the Cruising state is entered.

6. OFF cruise control lever event – a transition to the Cruising Off state
and the Maintain Speed activity is disabled.

7. ENGINE off – the Idle state is re-entered.

Note that almost all of these transitions are caused by the driver’s actions so
they are directly visible (apart from the transition from the Resume state to
the Cruising state).

Statechart Refinement

Given the initial statechart corresponding to the Control Speed use case, a
number of refinements can be made:

1. Enables and Disables of activities on transitions into states and out of
states can be shifted to the states, e.g. The Increase Speed activity is
enabled on entry to the Acclerating state and disabled on exit.

RDCS 423 - Real-time Distributed Computer Systems rm2/p9

This results in the following statechart:

2. Consider the effect of all alternative external events which could lead
to additional transitions being produced:

− ACCEL event: can occur in the Resuming, Cruising or Cruising
Off states → transition to Accelerating

− BRAKE pressed event: can occur while in the Accelerating,
Cruising or Resuming states → transition to Cruising Off

− OFF event: can occur while in Resuming or Cruising states →
transition to Cruising Off

− ENGINE off event: occurs in any state → transition to Idle state.

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm2/p10

Mapping to Hierarchical or Orthogonal Statecharts

Look for natural aggregations of states to create superstates to simplify the
flat statechart, e.g. consider Accelerating, Cruising, and Resuming as
substates of an Automatic Control superstate:

The Brake Pressed transition from the Accelerating state has a Select
Desired Speed action → shift to an exit action from Accelerating:

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm2/p11

Other aspects of the Cruise Control object can also be modelled, e.g. the
Brake Condition can be maintained by an additional orthogonal statechart
to the Auto Cruise Control statechart already described:

Note that in the COMET methodology, orthogonal statecharts are used to
show concurrently held states, and not concurrent execution. Separate
statecharts should be used to describe concurrently executing objects.

Example: State-dependent dynamic analysis - Cruise Control system

The aim of the analysis is to confirm the operation of the statechart
developed from the use case scenarios and to develop all the object
interactions from external inputs through to outputs in the form of a
collaboration diagram.

The use case description will reveal the need for the state-dependent
Cruise Control object to encapsulate the statechart and the various
device interface objects: Cruise Control Lever Interface, Engine
Interface, Brake Interface. Since final output of the use case is to adjust
the throttle position a Throttle Interface object is also needed.

The sequence of events through each scenario of the use case is traced via
an event sequence analysis, matching collaboration diagram messages
sequence numbers to statechart transitions.

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm2/p12

Consider the first external event ACCEL and the statechart response to it:

The corresponding event sequence on the collaboration diagram:

Increase Speed is the
primary activity - it
enables the Acceleration
object that determines
the throttle value to
gradually increase the
vehicle speed.

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm2/p13

The next external event is CRUISE when the cruise control lever is
released:

The corresponding event sequence on the collaboration diagram:

Maintain Speed is the primary activity - it enables the Cruiser object that
determines the throttle value to maintain the vehicle speed.

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm2/p14

The next external event is BRAKE when the brake is pressed:

The corresponding event sequence on
the collaboration diagram:

Maintain Speed is disabled and the
Throttle Value sent indicates that
manual control is resumed.

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm2/p15

The next external event is RESUMING when the cruise control lever is set
to Resume:

The corresponding event sequence on the collaboration diagram:

Resume Cruising
is the primary
activity - it enables
the Resumption
object that
determines the
throttle value to
resume the vehicle
cruise speed
before handing
over to the Cruiser
object to maintain
the vehicle speed.

[Gomaa, 2000]

[Gomaa, 2000] [Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm2/p16

Based on all the alternative events, the final collaboration diagram for this
use case scenario can be created:

And a hierarchical statechart can be produced showing all the collaboration
diagram labelled activities and transitions:

These diagrams form the basis for the next step in the COMET
methodology which is the development of the software architecture design.

[Gomaa, 2000]

[Gomaa, 2000]

