
RDCS 423 - Real-Time Distributed Computer Systems rm1/p1

REAL-TIME DISTRIBUTED SYSTEMS
DESIGN METHODOLOGIES

SOFTWARE LIFE-CYCLE ISSUES FOR REAL-TIME
SYSTEMS

Common software development models:

• Waterfall model - has some limitations but most-widely used

• Throwaway prototyping model

• Incremental development model (evolutionary prototyping)

• Spiral model

Waterfall model major stages (variations for RT systems):

• Software Requirements Specification (SRS) - specify the systems
external behaviour. Since RT systems are usually a component of
a much larger system → a System Requirements Specification
usually proceeds the SRS.

• Software Architectural Design - for RT systems the separation of
functionality into concurrent tasks is a major activity in this phase.
This is in addition to the usual separation into function software
modules. Behavioural and dynamic aspects of system
performance are also considered in this phase.

• Detailed Design - algorithmic details of each system component is
defined using a PDL (structured English or pseudo-code). For RT
systems attention is paid to algorithms for resource sharing,
deadlock avoidance, and interfacing to I/O devices.

• Coding - usually a concurrent programming language is selected
(e.g. Ada, Modula2 or Occam) or a sequential language with a
suitable multi-tasking operating system.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p2

• Testing - Although the basic testing approach is similar to
conventional systems testing, the non-deterministic nature of
RT systems introduces another level of complexity, as does
their application in embedded systems → may require
environment simulators to be constructed.

Testing can be subdivided into:
• unit testing
• integration testing
• system testing
• acceptance testing

The lower and upper levels of the testing program have much in
common with conventional software system, but integration
testing must specifically test the concurrent task interfaces.

Limitations of the Waterfall model:

• Software Requirements are not really tested until a working

system is available → errors in the SRS may be the last to be
found → very costly to correct.

• Due to the late availability of a working system, a design or
performance problem may go undetected until late in the testing
phase → also costly to correct.

Where the SRS may contain components with identified significant
risk factors, alternative models are preferred:

• The Throwaway Prototype model helps to resolve the first
problem above - i.e. specifically designed to clarify user
requirements (performed to a preliminary SRS).

• The Evolutionary Prototype model helps to resolve the second
problem above - i.e. by creating subsets of the system that
progress from prototype to working system. Allows performance
measurements to be done early on critical components.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p3

• The Spiral model provided a way of effectively combining
throwaway prototypes, evolutionary prototypes and the Waterfall
model by specifying an iterative approach made up of several
cycles of the Waterfall model stages.

SOFTWARE DESIGN CONCEPTS FOR REAL-TIME
SYSTEMS

Co-operation between concurrent tasks - primary problems encountered:

1. Mutual Exclusion - tasks require access to shared resources or
devices (e.g. multiple readers/writers OS problem with the
classical solution using binary semaphores).

2. Task synchronization - task co-ordination without the exchange of
data (the solution is to use binary semaphores or event counters).

3. Producer/Consumer - tasks need to communicate and exchange
data (the solution is to use intertask messaging which may be
loosely or tightly-coupled).

Environments for Concurrent Processing

There are three main environments:

1. Multiprogramming - multiple tasks sharing one processor →
virtual concurrency, i.e. the OS controls allocation of the
processors to tasks.

2. Multiprocessing - multiple processors with shared memory →
real concurrency with usually one virtual address space in which
tasks execute and communicate.

3. Distributed processing - multiple nodes interconnected via a
communications network → real concurrency with local address
spaces with message passing.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p4

SOFTWARE DESIGN METHODS FOR REAL-TIME
SYSTEMS

Evolution of Software Design Methods:

• 1960's: minimal systematic analysis and design, some use of

flowcharts, subroutines used for decomposition.

• 1970's: the growth of structured methods - top-down design,
stepwise refinement. Two main approached developed - data flow
orientated design (Structured Design - Demarco, 1978 and Gane,
1979 → lead on to Structured Analysis) and data structure design
(Jackson Structured Programming - Jackson, 1975 and the
Warnier/Orr method - Orr, 1977).

• late 1970's: for concurrent system design - introduction of the
MASCOT notation - Simpson, 1979 - extension of the data flow
approach that formalized intertask communication via channels and
the specification of pools (encapsulated shared data structures). Data
is accessed indirectly in the pools by calling access procedures that
synchronize access.

• 1980's: Jackson System Development (JSD) - Jackson, 1983;
Design Approach for Real-Time Systems (DARTS) - Gomaa, 1984;
the Naval Research Labs software cost reduction method (NRL) -
Parnas, 1984; Real-Time Structured Analysis and Structured Design
(RTSAD) - Ward & Mellor, 1985 and Hatley & Pirbhai, 1988.

• late 1980's-1990's: emergence of object-orientated analysis and
design (OOAD) methods - Booch, 1986 & 1991; Wirfs-Brock,
1990, Rumbaugh etal, 1991, Coad & Yourdon, 1992; Selic,
Gullekson & Ward, 1995 (ROOM); Booch, Rumbaugh & Jacobson
(UML), 1997; Douglass, 1998 (Real-Time UML).

• 2000's: convergence towards UML based approaches, e.g. Rational

Unified Process, Booch et al, 1999; COMET (Concurrent Object
Modelling and archectectural design mEThod Gomaa, 2000)

RDCS 423 - Real-Time Distributed Computer Systems rm1/p5

Requirements Specification versus Design Specification

Two views of a requirements specification are:

• the SRS should only address the external behavior of the system, i.e.
the system is viewed as a "black box", e.g. the NRL method.

• the SRS should also be potentially executable → a prototype can
then be developed from the specification → must include internal
structure to support those requirements, e.g. the JSD method.

Most analysis methods, e.g. RTSA and OOA follow a problem-
orientated approach, i.e. determine the problem domain components
and the interfaces between them:

• RTSA methods map problem domain functions to functional
modules in the design.

• OOA methods map problem domain objects to solution domain
objects in the design.

In both RTSA and OOA, decisions made in the analysis stage often
strongly influence the design, i.e. the problem orientated approach
results in the scope of components being determined during analysis
and their interfaces.

Criteria for Selecting Software Design Methods

1. The method must be in the published literature and not be

proprietary.

2. The method must have been used on a real application.

3. The method must not be orientated to a specific language.

4. The method must be more than design notation, i.e. it must
identify systematic steps to perform the design.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p6

Real-Time Structured Analysis and Design (RTSAD)

Two main variations of RTSA have been developed: Ward & Mellor,
1985 and Hatley & Pirbhai, 1988. An Extended System Modelling
Language (ESML) approach was an attempt (Bruyn etal, 1988) to
merge the two approaches.

The primary addition over the conventional SADT approach is:
• state transition diagrams (STDs)
• control flows
• integration of STDs and DFDs via control transformations (in the

Ward & Mellor approach) and control specifications (in the Hatley
& Pirbhai approach).

The first phase of RTSA requires the development of :
• the essential model (Ward & Mellor)
• the requirements model (Hatley & Pirbhai)

This model has three views (the first two of which are most important
for RT systems):
• the functional view
• the behavioural view
• the informational view (not supported in Hatley & Pirbhai)

Basic Terminology

• Functions: basic elements the system is decomposed into (also

called transformations or processes) which can be of the data or
control type. The interaction between functions is in the form of
data and control flows.

• Modules: during design the functions are mapped to modules.

• Finite state machines: in the form of state-transition diagrams
(STDs) define the behavioural characteristics of the system. A
control transformation is represented via a STD, decision tables or
process activation tables.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p7

• Entity-Relationship (E-R) models: used to identify the data stores
and the relationships between them. While useful in data intensive
applications they are not used in the Hatley & Pirbhai approach.

• Module cohesion: used in module decomposition to identify the
strength or unity of a module.

• Module coupling: used in module decomposition to identify the
degree of connectivity between modules.

Notation (Ward/Mellor)

Data flow and control flow diagrams are the primary notation used in
RTSA - they extend data flow diagrams to include event flows and
control transformations.

Transformations:

Flows:

Data Store :

Data
Transformation

Control
Transformation

Discrete Data
Continuous Data
Trigger/Enable/Disable Events

Data Store

RDCS 423 - Real-Time Distributed Computer Systems rm1/p8

Method (RTSA)

The method is iterative and not necessarily sequential:

1. Create the system context diagram - defines the boundary between
the external environment and the system to be developed. The
system is defined as a single data transformation with flows
between sources and sinks of information at terminators on the
diagram.

2. Perform data flow/control flow decomposition - the system
transformation is structured into functions (or processes or
transformations) with interfaces between them defined in terms of
data or control flows:
a) Hatley/Pirbhai: the emphasis is on hierarchical

decomposition of function and data → multiple levels of
data flow diagrams and data stores are specified with
contents defined in a data dictionary.

b) Ward/Mellor: the approach starts with an event list (set of
system inputs) and specifies the system response to each
event. The initial data/control flow diagram is non-
hierarchical but subsequently is structured to decompose
into lower-level diagrams if required.

3. Develop Control Transformations (Ward/Mellor) or Control
Specifications (Hatley/Pirbhai):
a) Ward/Mellor: input events trigger STD transitions through

control transformations and output events are used to control
execution of the data transformations. Control
transformations may not be decomposed further.

b) Hatley/Pirbhai: a control specification is defined by a STD,
transition table or process activation table (which shows
which processes are to be executed). Control specifications
can be decomposed further.

4. Define mini-specifications (process specifications): usually
defined in Structured English.

5. Develop data dictionary: define all data/event flows and data
stores.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p9

Method (RTSD)

In the design phase the Ward/Mellor and Hatley/Pirbhai approaches
diverge; Hatley Pirbhai uses system architecture diagrams whereas
Ward/Mellor continues with:

6. Allocate transformations to processors of the target system:

possibly redraw the DFDs for each processor.

7. Allocate transformations to tasks: the transformations on each
processor are allocated to concurrent tasks.

8. Structured Design: the transformations allocated to a task are
structured into modules. The criteria for allocation is module
coupling and cohesion coupled with the design strategies of
Transform and Transaction Analysis.

a) Module cohesion criteria: functional cohesion and
informational cohesion are the strongest criteria.

b) Module coupling: data coupling is the most desirable form
of coupling (parameter passing between modules) whereas
common coupling (shared global data) is the least
desirable.

c) Transform Analysis: a strategy to map a DFD to a
structure chart diagram (SCD) using input/output flow →
the input and output branches on the DFD are mapped to
separate branches on the SC.

d) Transaction Analysis: a strategy to map a DFD to a SCD by
identifying the different transaction types → each
transaction type on the DFD has a branch on the SCD with
one controlling transaction center module.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p10

Deliverables (RTSAD)

Analysis:
1. System Context Diagram
2. Hierarchical DFDs
3. Data dictionary
4. Mini-specifications of processes or transformations
5. STDs for each control transformation or specification

Design:
6. SCDs showing program decomposition into modules - a module is

externally defined by input, output parameters and its function
and internally defined by pseudocode.

Example: Automotive Cruise Control and Monitoring System

Structured Analysis:

1. Develop the System Context Diagram:

[Gomaa, 1993]

RDCS 423 - Real-Time Distributed Computer Systems rm1/p11

2. Decompose the System Context Diagram into major functions:

3. Perform Automotive Cruise Control DFD:

• Three transformations monitor sensors and generate appropriate

events.
• A transformation computes the current speed and cumulative

distance based on time and drive shaft input.

• A transformation computes the required throttle setting based on the
current speed and cruise control setting

• A transformation converts the requested throttle value to the
physical setting.

[Gomaa, 1993]

[Gomaa, 1993]

RDCS 423 - Real-Time Distributed Computer Systems rm1/p12

4. Control Speed DFD/CFD:

• The data transformation are triggered, enabled/disabled at state
transitions:

E1 - Enable "Increase Speed" D2 - Disable "Increase Speed"
E4 - Enable "Maintain Speed" D5 - Disable "Maintain Speed"
E6 - Enable "Resume Cruising" D7 - Disable "Resume Cruising"
T3 - Trigger "Select Desired Speed"
T8 - Trigger "Clear Desired Speed"

5. Cruise Control STD:

[Gomaa, 1993]

[Gomaa, 1993]

RDCS 423 - Real-Time Distributed Computer Systems rm1/p13

• The Control Speed DFD/CFD executes the Cruise Control STD.
State transitions are labelled with input events/output events and
the output event executes the corresponding data transformation
on the Control Speed DFD/CFD.

6. Measure Distance and Speed DFD/CFD:

• Determine distance is periodically activated to compute the

Incremental Distance travelled based on the current Shaft
Rotation Count, Last Distance (last value of Shaft Rotation
Count) and the Calibration Constant (the Shaft Rotation Count
per km).

• The Incremental Distance is then added to the Cumulative
Distance.

• Determine Speed receives the Incremental Distance and computes
the Current Speed given the Incremental Time.

Structured Design:

Structured design provides no guidelines for decomposition into
concurrent tasks → structure as one program initially.

[Gomaa, 1993]

RDCS 423 - Real-Time Distributed Computer Systems rm1/p14

1. Perform Automobile Cruise Control:

• The four modules correspond to the four functions to be

performed:

• The Get Cruise Control Input is decomposed further into
Read Control Lever Input, Read Engine Status and Read
Brake Status.

• Note that polled I/O is assumed, i.e. the inputs are polled on
a cyclic periodic basis. For asynchronous I/O, i.e. interrupt
driven, asynchronous I/O tasks should be assigned (but
structured design provides no guidelines for this).

[Gomaa, 1993]

RDCS 423 - Real-Time Distributed Computer Systems rm1/p15

• Given a new cruise control input, the Control Speed module is

called which then calls the Cruise Control module. This module
encapsulates the Cruise Control transition table (with input events
being used as the index into the table) and the output of the table
comprises the Cruise Control Actions which is used by Control
Speed to call the appropriate module.

• Although it would be possible to have common coupling for the
Current Speed and Desired Speed data items, the Structured
Design approach advises that Information Hiding Modules
(IHMs) are be used to encapsulate these data stores → these also
provide the operations used to access the data. For example,
Maintain Speed calls Get Current Speed and Get Desired Speed,
and based on the difference, sends the adjustment Throttle Value
to the Output to Throttle module.

[Gomaa, 1993]

RDCS 423 - Real-Time Distributed Computer Systems rm1/p16

Timing Issues

• As the entire system is treated as a single sequential program, the

timing aspects must be considered carefully. For example,
assume that the control functions should be performed with an
update rate of 100 msec and the monitoring functions should be
performed with an update rate of 1 sec.

• A timer event can be used to awaken the Perform Automobile
Cruise Control module every 100 msec and the Perform
Automobile Monitoring is called every 10 activations of the timer
event.

• The Perform Automobile Cruise Control loop calls Get Cruise
Control Input, Determine Distance and Speed, Control Speed and
Perform Calibration. In Control Speed the Select Desired Speed,
Clear Desired Speed and Deactivate Speed modules are all run in
response to events only.

• When the vehicle is in the following states:
a) Cruising state - Maintain Speed is called periodically

 b) Accelerating state - Increase Speed is called periodically
 c) Resuming state - Resume Cruising Speed is called periodically.

• The Get Cruise Control Input module and Output to Throttle must
be concurrent or interleaved in a sequential program.

Assessment of Method

• It was the major RTSAD method with many successful applications.

• Wide range of CASE tools to support the method.

• Minimal guidance on system decomposition.

• Structured Design does not specifically address task structuring.

• Application of Information Hiding methods is minimal - better in NRL
method and OOD method.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p17

Design Approach for Real-Time Systems (DARTS)

This approach (due to Gomaa, 1984-1987) emphasizes the decomposition
of the real-time system into concurrent tasks and defining the interfaces
between the tasks → it provides task structuring criteria and guidelines
for defining the task interfaces.

Basic Concepts:

• Task structuring criteria: a set of heuristics derived from
experience - the criteria are applied to the transformations
(functions) on the DFD/CFDs developed using RTSA based on
the temporal sequence in which the functions are executed.

• Task interfaces: provided in the form of message communication,
event synchronization or information hiding modules (IHMs).

• Information hiding: used for encapsulating data stores and state
transition tables.

• Finite state machine: defined in the form of STDs

• Evolutionary prototyping and incremental development: assisted
by the identification of system subsets using event sequence
diagrams, i.e. the sequence of tasks and modules to process an
external event is identified so that they may be incrementally
developed.

Notation:

• DFD/CFDs and STDs from RTSA are extended to include event

flows. SCDs from RTSD are also used to show task
decomposition into modules.

• Task architecture diagrams (TADs) are used in DARTS to show
the decomposition of the system into concurrent tasks and their
interfaces.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p18

Method (DARTS)

1. Develop system specification using RTSA.

2. Structure the system into concurrent tasks: these criteria are
applied to the lowest level of the hierarchical set of DFD/CFDs.
A preliminary TAD is drawn using the task structuring criteria:

• I/O data transformations that interface to external devices
are mapped to asynchronous I/O tasks, periodic I/O tasks, or
resource monitor tasks.

3. Define task interfaces:
• Data flows between tasks are mapped to either loosely-

coupled or tightly-coupled message interfaces.
• Event flows are mapped to event signals.
• Data stores form the basis of IHMs.
• A timing analysis can be performed using event sequence

diagrams.

4. Design each task:
• Each task represents a sequential program which is

structured into modules using structured design - either
transform analysis or transaction analysis can be used for
this purpose.

[Gomaa, 1993]

RDCS 423 - Real-Time Distributed Computer Systems rm1/p19

• The function of each module is defined and then the
internals of each module are designed.

Deliverables (DARTS)

1. RTSA specification

2. Task structure specification - defines the concurrent tasks in the
system (function and interfaces).

3. Task decomposition - structure of tasks into modules (function,
interfaces and detailed design in PDL).

Example: Automotive Cruise Control and Monitoring System

The RTSA specification follows from the analysis phase of the RTSAD
method.

Task Structuring:

1. As shown above the Cruise Control subsystem can be represented as
TADs . The Cruise Control subsystem is decomposed into
asynchronous device input tasks of Monitor Cruise Control Input
and Monitor Shaft Rotation. Each task is activated by an external
interrupt.

[Gomaa, 1993]

RDCS 423 - Real-Time Distributed Computer Systems rm1/p20

2. Monitor Auto Sensors and Perform Calibration are both periodic
input tasks - temporally cohesive (since both are linked to the
same timer event).

3. Cruise Control is a high priority control task → executes the
STD

4. Auto Speed Control is a task that is sequentially and functionally
cohesive (since all its functions are related to speed control and
the are all constrained to execute sequentially).

5. Throttle is a periodic output task.

6. Determine Distance and Speed is a periodic sequentially cohesive
task which computes the Cumulative Distance and Current Speed
at regular intervals.

Task Interfaces:

All tasks communicate via messages or IHMs:

1. Data stores that are accessed by more than one task are mapped to
IHMs. Access control is achieved via semaphores.

2. The interface to the Cruise Control task is via a loosely- coupled
FIFO queue → ensures that I/O tasks are not held up by Cruise
Control, and if input events arrive in quick succession none are
lost.

3. The interface between Cruise Control and Auto Speed Control is
tightly coupled with no reply.

Structured Design:

Given the task interface design, the next step is to design each task
(which represents a sequential program) → can use the Structured
Design method to decompose into modules.

The Cruise Control Task has a main procedure that is (by convention)
given the same name as the task.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p21

1. Cruise Control calls Receive Cruise Control Message to wait for

an input message (i.e. the task is suspended on this input).

2. Cruise Control calls the STM module passing it the appropriate
event and returning the appropriate action from the transition
table.

3. Where the action is Select Desired Speed or Clear Desired Speed,
the appropriate procedure is called.

4. Other actions are sent as speed commands to Auto Speed Control.

5. There are two IHMs, Current Speed and Desired Speed - Update
and Get ensure synchronized access to the data items.

[Gomaa, 1993]

[Gomaa, 1993]

RDCS 423 - Real-Time Distributed Computer Systems rm1/p22

1. Auto Speed Control is suspended on Receive Speed Command
waiting for a message.

2. Transaction Analysis can be applied to this task by identifying the
command received as a transaction, Auto Speed Control is the
transaction processor which calls the appropriate transaction
handling procedures.

Assessment of Method

• Emphasize decomposition of system into concurrent tasks and

provides criteria for identifying tasks.

• Gives guidelines for interfaces between tasks.

• Emphasizes use of STDs and provides a transition from RTSA to
a real-time design by providing the decomposition principles.

• Although IHMs are used, they are not as extensively employed as
in OOD methods.

• A potential problem with DARTS is that it is dependent on a well
performed RTSA phase but the RTSA approach is weak on
system decomposition guidelines. To minimize the impact of this
limitation, the DARTS approach specifies that attention should be
directed to control flow (i.e. STDs) before data flow.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p23

Object-Orientated Design for Real-Time Systems

OOD was initially a design method based on the primary concepts of
abstraction and information hiding. The two main approaches to OOD in
the literature initally diverged on the importance of inheritance:

1. Inheritance is viewed as a desirable but not essential feature of OOD

- the view taken by the Ada programming community [Booch].

2. Inheritance is viewed as an essential feature of OOD - the view
taken by the OO programming community - e.g. Smalltalk
[Goldberg] and Eiffel [Meyer].

The initial advantage of Booch's approach (1986) was that it was more
applicable to concurrent and real-time systems design – it supported
objects through information hiding but not classes or inheritance,
Booch’s later approach (1991) supported classes and inheritance.

Notation:

• Class diagrams - shows the system classes and the inheritance and

uses relationships between all classes.

• Object diagrams - shows the system objects and the relationships
between all objects.

• State transition diagram - shows the object states and the events
that cause the transitions between object states.

• Timing diagrams - shows the dynamic interaction between objects
by showing the time-ordered sequence of execution of operations
between objects.

• Module diagrams - shows the allocation of classes and objects to
modules in the physical system.

• Process diagrams - shows the allocation of concurrent processes
(tasks) to processors in the physical system.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p24

Steps in Method:

Booch referred to his OOD method as "Round-trip Gestalt Design" → a
highly iterative holistic approach.

1. Identify the classes and objects - find the key abstractions in the
problem domain. Booch has had three attempts at this:

a) Identify objects by finding all nouns and all operations by
finding all verbs in the specification.

b) Use Structured Analysis and identify objects from the DFD,
i.e. sources or sinks of data have corresponding software
objects to "hide them".

c) Directly analyse the problem domain and apply object
structuring criteria, i.e. each entity has a class which has
defined attributes and its relationships with other classes are
established.

2. Identify class and object semantics - the interface and operations of

each object is determined. This is very iterative due to the effect of a
change in one object's interface on another object's definition.

• Preliminary class and object diagrams are developed.

3. Identify the relationship between classes and objects - closely

coupled to the above step - static and dynamic dependencies
between objects are determined, i.e. object visibilities are
considered.

• Inheritance and uses structures are defined.
• Class and object diagrams are refined.
• Preliminary module diagrams are developed.
• Object classification - as server (only provide operations),

actor (only use operations) or agent (both provide and use
operations).

4. Implement classes and objects - classes and objects are allocated to

information hiding modules and programs are allocated to
processors. Object internals are designed and developed.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p25

Deliverables

1. Class diagrams and class specification.
2. Object diagrams and object specification.
3. STDs and timing diagrams.
4. Module diagrams and module specifications.
5. Process diagrams and process specifications.

Example: Automotive Cruise Control and Monitoring System

Preliminary Class and Object diagrams are developed:

Note that the objects Engine, Brake, and Cruise Control Input (which
would be classified as actors) send messages to Cruise Control
corresponding to input from external devices they encapsulate. Cruise
Control (which is classified as an agent) encapsulates the STD and
invokes operations in other objects, e.g. it sends a message to Throttle
to Maintain Speed, Resume Cruising, etc. Shaft Count is an example
of a server object.

Identifying Relationships between Classes and Objects

The static and dynamic dependencies between objects are determined
and the inheritance and uses structures are defined.

[Gomaa, 1993]

RDCS 423 - Real-Time Distributed Computer Systems rm1/p26

In this example all classes have only one instance (the object of the
same name), except for the Maintenance class which has subclasses of
Oil Filter Maintenance, Air Filter Maintenance, Major Service
Maintenance. Each of the subclasses uses the same Maintenance
Display class.
The class
diagram is very
simple for this
example:

Assessment of Method:

1. The method is strongly based on information hiding, classes and

inheritance - key concepts in OO software design.
2. The structuring of the system into objects makes the system more

maintainable and the components potentially reusable.
3. The provision of inheritance allows components to be modified in

a controlled manner as required.
4. Maps well to language that support information hiding modules

(e.g. Ada and Modula-2) and to languages that support classes
and inheritance (e.g. C++, Smalltalk and Eiffel).

5. Doesn't really address task structuring.
6. A highly iterative procedure is required and procedures at each

step are not very specific.
7. Although the method does provide for timing diagrams it does not

fully address timing constraints.

[Gomaa, 1993]

RDCS 423 - Real-Time Distributed Computer Systems rm1/p27

Optical
Measuring
Device

Optical
Sensor

1

1

Infrared
MD

Laser MD

Optical
Encoder

Sensor

Multiplexed
Sensor

Uniplex
Sensor

A/D
Converter

A/D
Converter

1

1

*

1

Real-Time UML

The purpose of UML is to support an integrated OO design methodology,
and because of its completeness and widespread support it has been
extended to model real-time embedded systems. Our focus here, while
briefly reviewing the primary notation of UML, is the extensions to
support real-time modelling. - in particular, its support for temporal
scenario modelling and representations of tasking.

UML Class Diagrams

Relations among classes and objects:

• Association - messaging between objects
bidirectional or unidirectional (open
arrow)

• Aggregation - one object containing
another (diamond indicates owner)

• Composition - aggregation plus
create/destroy role (closed diamond or
shown by inclusion)

• Generalization - inheritance of
characteristics of a parent class (shown
by open arrow directed towards parent)

• Refinement - generic (or template)
elaborations of incomplete class
specifications (dashed lines with closed
arrows)

Instance multiplicity:

• Integer - number of objects participating in the relationship
• * - unspecified multiplicity greater than zero

RDCS 423 - Real-Time Distributed Computer Systems rm1/p28

UML Object Diagrams

The UML object diagram shows the relationships between objects
in the system, and although a context diagram is not explicitly
supported, appropriate stereotypes on objects and messages can be
used to create an object context diagram, e.g. for the elevator
controller:

Message Stereotypes

The context-level flows or messages are abstract at this point of the
design, but expected data content, arrival pattern and synchronisation
pattern can be defined (implementation being deferred until later in the
design process).

UML defines events as messages with a class stereotype of
<<signal>> and attributes:
• Message arrival - episodic (unpredictable but bounded by a

minimum interarrival time, may be random or bursty) or periodic
(characterised by a period and jitter).

• Message synchronisation - call (sender blocked but single
threaded), waiting (sender blocked but multi-threaded) and
asynchronous (non-blocking) [Booch added extensions of balking
(sender aborts if receiver not ready) and timeout (balking with a
waiting time) synchronisations].

Elevator
System

Potential Passenger

Passenger

Service Person

Elevator Arrival

Elevator Request

Elevator Status
Boarded

Elevator Status

Alarm

Elevator Status

Elevator Request

Leaving

Object 1 Object 2
Message 1

Message 2
<<asynchronous>>

<<balking>>

RDCS 423 - Real-Time Distributed Computer Systems rm1/p29

Use Cases

A use case is used to capture a customer requirement and it shows the
general cases of interaction between the system and all external
objects - it is built from the underlying event flows on the context
diagram.

Ultimately use cases may be decomposed into scenarios which show
the detailed object interactions (i.e. scenarios are instances of use
cases). Use cases may also be abstracted from a number of scenarios
defined through discussion with the customer.

Some example scenarios
from the Ride use case:

• Elevator at floor
• Elevator must travel to

the floor
• An elevator must handle

a pending request (before
or after picking up a
potential passenger).

• Passenger issues another
request

Scenarios can be modelled in two ways in UML: sequence diagrams
and collaboration diagrams. Sequence diagrams (the most commonly
used) emphasise messages and their sequence, while collaboration
diagrams tend to emphasise system object structure.

Vertical lines are used to represent objects, and horizontal directed
lines represent messages. Each message starts from an originator
object and ends at a target object, with time flowing top to bottom.
The text annotations describe object names, message names and the
conditions associated with the message.

Service Person

Elevator

Potential
Passenger

Passenger

Ride

Hold Door
Open

Request
Elevator

Service
Elevator

RDCS 423 - Real-Time Distributed Computer Systems rm1/p30

UML Sequence Diagrams

Additional information on sequence diagrams

• Event identifier: reference character for message triggers and

outcomes (e.g. a: Passenger 1 is on floor 6, b: Elevator arrives on
floor 6).

• Timing constraints - two types:
1. Marker bar with time difference between events, e.g.

20ms
2. Relational expressions between events, e.g. {e - d < 500 ms}

UML currently only provides limited specification of timing
constraints via OCL, so additional notation is usually required, e.g. a
soft time constraint between two events could be represented by:
 AVE (b - a) < = 3 sec where AVE is an average operator.

Passenger 1 Elevator
System

Passenger 2

Request UP Elevator
Light Button Passenger 1 is on floor 6

Passenger 2 is on floor 2

Door closes, elevator
starts and passes floor 2

Elevator arrives floor 6

Request DOWN Elevator

Light Button
Queue request

Open Door

Request Floor 8

Light Button

Door timeout and close

Open Door
Elevator goes to floor 8

Elevator arrives floor 8
Passenger 1 leaves Door timeout and close
Elevator goes to floor 2 to
handle pending request

.

.
.
.

Time

a
b

c

d
e

RDCS 423 - Real-Time Distributed Computer Systems rm1/p31

There are also variations on core UML that bridge the gap between
sequence diagrams and state diagrams by allowing state marks on
sequence diagrams, i.e. rounded boxes on the vertical object lines that
represent the change of state of an object in response to events.

UML State Diagrams

UML state diagrams extend the basic concept of Finite State Machines
in three ways:

• Nested hierarchy, e.g.
• Concurrency, e.g.
• Extended transitions, e.g.

 event-name(parameters)[guard]/action list^event list

State diagrams, although capturing all state dependent behaviour of an
object, do not show typical paths through the system - this is the
function of scenarios. Scenarios can be represented by conventional
timing diagrams (not defined in UML) or sequence diagrams (which
are defined in UML).

Events can also be structured in object hierarchies, e.g. input events
from a mouse or keyboard, or exception event objects handling
progressively more detailed exceptions.

 Main Task

 Start
 End

H

T7
T3(a,b,c)

T4
T2

T1/z
T5^T3(x,y,z)

T8[w < 5]

T14[p = 2]
[s]

RDCS 423 - Real-Time Distributed Computer Systems rm1/p32

UML System Task Diagrams

UML can model concurrency in two ways:
• Class and object diagrams can show tasks directly
• State diagrams can show concurrent component execution

A System task diagram is a filtered object diagram than only shows
concurrent threads of execution. An extension to core UML created for
the task object is the <<active>> stereotype.

Each processor is identified with its multiplicity (1, 2, …, *) and the
multiplicity of each task is shown where appropriate. Each task is
rooted in a single active composite object that receives events for that
task and dispatches them to the appropriate object within the task.

N.B. There are many extensions to UML in preparation (V1.4 was
released in late-2001, V1.5 is in draft and V2.0 is in preparation), see
www.omg.org/uml for the latest.

Elevator
Scheduler

Central Processor
Central Station

Elevator
Monitor

Floor Processor

Button
Panel

Outer
Door

Elevator

Elevator Processor

Inner
Door

Button
Panel

Cable
Monitor

1
1

1

1

1

1
1 1

1

1

1

1 1

1

* *
*

*
*

*

1

1

RDCS 423 - Real-Time Distributed Computer Systems rm1/p33

Rational Rose Real-Time (formally ObjectTime)

UML for Real-Time grew out of the Real-Time Object-Orientated
Modelling langauge (ROOM) with terminology being aligned with
UML 1.1 but retaining all the semantics of ROOM models. There are
a number of specific additional constructs used in Rose Real-Time that
accommodate the mapping from ROOM models.

Capsules

UML for Real-Time provides built-in light weight concurrent objects,
known as capsules. Capsules are simply a pattern for providing light-
weight concurrency directly in the modeling notation. A capsule is
implemented in Rose RealTime as a special form of class.

Capsules are highly encapsulated and communicate through special
message-based interfaces called ports. The ports are in turn connected
to other capsules, enabling the transmission of messages among
capsules. The advantage of message-based interfaces is that a capsule
has no knowledge of its environment outside of these interfaces,
making it a much more flexible and robust than regular objects.

Capsule structure diagrams

A new diagram has been
introduced that specifies the
capsule's interface and its
internal composition. The
diagram is called a capsule
structure diagram (based on
the UML 1.3 specification
collaboration diagram). The
semantics of the capsule
structure diagram allow
Rose RealTime to generate
detailed code to implement
the communication and aggregation relationships among capsules.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p34

Mapping capsules to threads

Rose RealTime allows designers to make use of the underlying multi-
tasking operating system so that the processing of a capsule on one
thread does not block the processing of capsules on other threads.
Designers can specify the physical operating system threads onto
which the capsules will be mapped at run-time. Not every capsule
should run on a separate thread. For most capsules, it is sufficient to
leave them in one thread and allow the Services Library controller to
invoke their behavior as messages arrive.

Capsules with transitions that may block, or that have excessively long
processing times, should be placed in separate threads. Deciding
which capsules need to execute in different threads is a design issue.

Protocols

The set of messages exchanged between two objects
conforms to some communication pattern called a
protocol. A protocol comprises a set of participants,
each of which plays a specific role in the protocol. Each
such protocol role is specified by a unique name and a
specification of messages that are received by that role
as well as a specification of the messages that are sent
by that role. As an option, a protocol may have a
specification of the valid communication sequences; a
state machine may specify this. Finally, a protocol may
also have a set of interaction sequences (shown as
sequence diagrams). These must conform to the protocol state
machine, if one is defined.

Hierarchical State Machines

A state can be composed of other states, called substates.
This allows modeling of complex state machines by
abstracting away detailed behavior into multiple levels.
A state that has substates is called a composite state.

RDCS 423 - Real-Time Distributed Computer Systems rm1/p35

UML Patterns for Real-Time Software Design

Design patterns are simply a formalisation of a particular approach to
a common problem in a context. They can be described by text
(usually in a format that specifies the problem context, the solution and
any constaints) and/or diagrams. UML is particularly useful in this
context. Two examples will help illustrate (note that in UML notation
a pattern is described by a dashed oval connected to partcipating
entities with a dashed line).

Safety Executive Pattern

Safety Executive
Pattern

Safety Policies Safety Measures

** **
Fail-Safe Channel

Subsystem

Watchdog

Safety Executive

*

1

*

1
*

1

*

1

*1 *1

 : Safety
Executive

 : Watchdog Subsystem 1 :
Subsystem

Subsystem 2 :
Subsystem

 : Fail-Safe
Channel

1: Service

2: Service

3: Service

4: Timeout

6: Service
5: Watchdog timeout

7: Recovery Action

8: Restart

9: Service

10: Service

RDCS 423 - Real-Time Distributed Computer Systems rm1/p36

Broker Pattern

Client Package

Heart Rate Client

Heart Rate Client Proxy

*

1

*

1

Object Broker

Server Package

Heart Rate Server

Heart Rate Server Proxy

*

1

*

1

Broker Pattern

Heart Rate Trend :
Heart Rate Client

 : Heart Rate
Client Proxy

 : Object
Broker

 : Heart Rate
Server Proxy

 : Heart Rate
Server

3: Subscribe 4: Subscribe

1: Register
2: Register

5: Notify
6: Notify

7: Notify8: Notify

9: Detach 10: Detach

