
RDCS 423 - Real-time Distributed Computer Systems dp2/p1

DISTRIBUTED OBJECTS/COMPONENTS

The 'historical' approach to Distributed Client/Server Applications
Software Development:

• Client - application logic: e.g. SQL client for data access, VC++ or
VB for user interface.

• Server - based on relational databases, e.g. SQL server - Oracle,
Ingres, Powerhouse, Informix, Sybase, etc.

• Add a transaction processing monitor on server to support multiple
clients.

• Communications - e.g. RPC, TCP/IP sockets, etc. Too low a level of
abstraction - poor encapsulation, ease of use, etc.

• Web specific - e.g. HTTP/CGI - very slow

Distributed Object approaches takes the client/server model further by
decomposing both the client and server into multiple objects and
increasing flexibility.

Distributed Objects need to be able to:
• migrate between nodes
• operate anywhere
• encapsulate "legacy" code

→ the complexity of distributed objects needs to be efficiently managed
through the development of a standard architecture.

Object Management Group (OMG) - founded April 1989 to promote:
"Interoperability for applications integration through co-operative
creation and promulgation of object-orientated standards based on
commercially available software".

OMG sees application integration and distributed processing as the same
problem → both need to support heterogeneous, networked, physically
distributed and multi-vendor systems sharing information.

There are a number of ways the aims of OMG have been implemented,
apart from the offically sponsored CORBA, e.g. Microsoft's DCOM,
Java RMI -> need to look at key features of these approaches.

RDCS 423 - Real-time Distributed Computer Systems dp2/p2

HTTP/CGI

Before Java/CORBA on WWW there was the Hypertext Transfer
Protocol (HTTP) which provides RPC-like operations on top of a
Sockets layer. Pages in the Hypertext Markup Language (HTML)
are located via Universal Record Locators (URLs) which uniquely
identify all WWW resources. A typical transfer is shown here:

HTTP is very simple, it provides a stateless TCP/IP connection that is
dropped at the end of request and it does not allow multiple parallel
requests. It does support variable data representations which are
negotiated between client and server every connection.

To provide a 3-tier client-server model HTTP requires data to be
collected on the client and sent to the server - the Common Gateway
Interface (CGI) provides for this. An HTML form on the client provides
an interface to collect data contents to be sent to the server. The server
requires a back-end program to interpret the data and it is passed via the
CGI. Data is returned from this program in HTML format via the CGI:

 Browser
 (Client)

 Server

2

3

4

HTML

Internet
TCP/IP

HTTP
request

HTML
Docs

HTTP
response

1

 Browser
 (Client)

 Server

HTML/
Forms

Internet
TCP/IP

HTTP
request

HTTP
response

CGI

DBMS

Apps

RDCS 423 - Real-time Distributed Computer Systems dp2/p3

Example: HTTP Post - End-to-end Client/Server

Performance Issues

• Stateless connection - impact on multiple forms. Requires hidden

fields within a form to maintain the state on the client -> big overhead.

• The POST HTTP method is usually preferred over the GET method as

GET appends the entire form contents after the URL (after a ?)
whereas POST appends it to the body of the HTML message. For a
GET, the HTTP server parses the URL and puts the form contents into
a variable and the space for this may be very limited in the
environment area -> it is truncated or OS problems.

• Ping - 600 msec (Pentium 120, NT4.0, 10Mb/s Ethernet) compared

with appox. 2 msec for TCP/IP and 3 msec for CORBA.

Submi

Browser Server Environment Variables

Post
Write

Execute
CGI

Read

Standard Input

Standard Output
Return HTML

RDCS 423 - Real-time Distributed Computer Systems dp2/p4

Java RMI

Remote Invocation Method (RMI) supports remote method invocation for
objects across Java virtual machines. It transparently allows remote RMI
objects to be accessed as if they were local Java objects.

RMI invocation passes local objects by value rather than by reference
and to achieve this an object serialisation service is used to 'flatten' a
local Java object's state into a serial stream that can be passed as a
parameter inside a message. RMI also extends the Java exception classes
to support remote failures of objects.

RMI development process

Issues: Provides an ORB, but no multilanguage support and limited
scaling. Performance - ping (P120, NT4, 10Mbit/s) approx. 6 msec.

Define and implement
remote interface

.java

javac

.class

rmic

Client stub
(.class)

Implement
client

javac

Server class

Server skeleton

Start client

Start RMI registry

Start server objects

Register remote objects

.java

.class

uses
uses

RDCS 423 - Real-time Distributed Computer Systems dp2/p5

Microsoft's DCOM

Microsoft's Distributed Component Object Model (DCOM) is the main
competition to CORBA. DCOM is supplied with Windows NT4.0 and
Windows 98. ActiveX is a DCOM object. Microsoft have integrated Java
with DCOM by providing DCOM bindings in Visual J++ so that remote
Java objects can be invoked along with ActiveX components.

DCOM separates object interfaces from implementation through an IDL
based on Microsoft's DCE (Distributed Computing Environment).
Importantly DCOM objects are not objects in the OO sense (with a state
that can be maintained between connections). DCOM also doesn’t
support IDL-specified multiple inheritance (but it supports multiple
interfaces which supports reuse).

DCOM interfaces

DCOM interfaces are language independent 'contracts' between client and
server - in effect it provides a binary interoperability specification for
how clients are to access server interfaces via pointers and remote
proxies:

At run time, each interface has an Interface Identifier (IID) which is a
DCOM-generated 128-bit Globally Unique Identifier (GUID). Clients use
the GUID to query objects about interfaces (which are the smallest
possible contracts between clients and servers).

Object
User
Pointer

Interface Function
Table

Internal Data

Member Function
Implementation

DCOM Object

DCOM Object Client

RDCS 423 - Real-time Distributed Computer Systems dp2/p6

IUnknown

In-process

Stub

Remote Server

RPC

Client

Stub

Local Server

LRPC

COM

DCOM

COM

DCOM

 Object

 Object

Proxy

 Object

Proxy

DCOM Objects

A DCOM (or ActiveX) object is a component that supports multiple
interfaces defined by that object's class. A DCOM class implements one
or more interfaces and is identified by a unique 128-bit Class ID
(CLSID). A standard IUnknown interface is used to negotiate interfaces
and allocate pointers to
them.

Note that DCOM does
not have unique object
IDs since objects are accessed by transient pointers to interfaces
(consequently object instances are less important in DCOM than in more
classical object models).

DCOM Servers

DCOM servers house
object classes (with
CLSIDs) that are used to
create objects via a Class
Factory:

Clients can communicate
with servers transparently through proxies for out-of-process remote
servers or local servers:

Issues: Provides an ORB, multilanguage support (Microsoft) and
arguable scaling. Performance - ping (P120, NT4, 10Mbit/s) 3.9 msec.

DCOM Object

IUnknown

Interfaces

IUnknown

DCOM Server

DCOM Object Interfaces

Class Factory IClassFactory/
IClassFactory2

RDCS 423 - Real-time Distributed Computer Systems dp2/p7

OMG CORBA

Overview

The Common Object Request Broker Architecture (CORBA) - a
software bus architecture - where the interface is separated from
implementation and the bus is common to all nodes.

The key components in the CORBA specification are:

• The Object Request Broker (ORB) - the software bus, or
infrastructure that allows objects to access each other.

• The Interface Definition Language (IDL) and associated interfaces
to the ORB - supports object implementation that is totally
independent of the interface.

To support the invocation of objects there are two interfaces provided in
CORBA:

• The Static Invocation Interface (SII) - supports remote object
invocation through a syntax that is natural for the implementation
language of the invoking object (e.g. for C++ a remote object
"jump" could be called with myobject -> jump())

• The Dynamic Invocation Interface (DII) - where complete
knowledge about the remote object is not known at compile time
(which would allow static invocation to be used). The API for DII is
more complex than the SII, but supports run-time binding.

ORB

Client Object

SII (IDL Stubs) DII

Server Object

Object Adaptor
IDL Skeletons

RDCS 423 - Real-time Distributed Computer Systems dp2/p8

The CORBA Standard:
• specification 2.0 released - late 1995.
• supports multiple language mappings - C, C++, Ada, SmallTalk,

COBOL and Java.
• current services: naming, event management, transactions, lifecycle,

security, relationships, persistent objects, concurrency
externalization; with activity on extensions for queries, time
management, change control, licensing, etc.

• current facilities: basic system management services; with activity
in defining specific business objects .

Some major CORBA implementations:
• Orbix - IONA
• Joe/NEO - SUN
• Orb Plus - HP
• SOM - IBM
• ObjectBroker - DEC
• VisiBroker - Visigenic
• Java 2 - subset ORB

CORBA ORB

The purpose of the ORB is to allow a client object to invoke a method
on a server object anywhere on the ORB - note that the client/server
relationship is limited to coordination of the interaction and is not a
function of the objects.

The CORBA 2.0 ORB provides global identifiers or Respository IDs to
globally and uniquely identify components - they are generated by IDL
pragmas and can be various format strings (most commonly in a three
level naming hierarchy IDL):
• object name
• major version
• minor version numbers

DCE and local user formats are also supported.

RDCS 423 - Real-time Distributed Computer Systems dp2/p9

CORBA components:
• Client IDL stubs: precompiled stubs that define how clients invoke

services on the servers. Services are defined by IDL, and these stubs
are generated by the IDL compiler. One of the stub functions is
marshalling - encodes and decodes operations and parameters into
'flattened' messages to be sent to the server.

• Dynamic Invocation Interface (DII): allows server interfaces to be
looked up at run-time (via metadata) and interacted with.

• Interface Repository APIs: provides information on component
interfaces, supported methods and required parameters.

• ORB Interface: utility function APIs for converting object
references to/from strings.

• Server IDL stubs (or skeletons): static interfaces to services
generated by the IDL compiler.

• Dynamic Skeleton Interface (DSI): run-time binding mechanism
for components that do not have IDL-based compiled skeletons. It
interprets incoming requests for target objects and methods.

• Object Adapters: provides a run-time environment for instantiating
server objects, passing requests to them and assigning object
references (or IDs). All ORBs must support a Basic Object Adapter
(BOA).

• Implementation Repository: stores information about server classes
(from which its objects are instantiated), administrative, audit and
security information.

Implementation
Repository

ORB

Client Object

Dynamic
Invocation

Object Implementation

Object Adaptor

Dynamic
Skeletons

Interface
Repository

Client IDL
Stubs

ORB
Interface

Static
Skeletons

RDCS 423 - Real-time Distributed Computer Systems dp2/p10

Inter-ORB architecture

One of the main strengths of CORBA 2.0 is the addition of
interoperability specifications between ORBs through a mandatory
Internet Inter-ORB Protocol (IIOP). It is essentially TCP/IP with some
CORBA-defined messages to support a common backbone. All CORBA
compliant ORBs must support IIOP or provide a half-bridge to it, i.e.
some other Environment-Specific Inter-ORB Protocol (ESIOP) to IIOP.
An example ESIOP specified by CORBA 2.0 is OSF's DCE for mission
critical ORBs:

CORBA Cooperating Business Objects

Business objects are self-contained applications with a user interface, a
state, and knowledge about cooperative processing with other business
objects. They are top-level components that closely mimic business
processes and are recognized by the end-user of the system.
Business objects have late and flexible binding and well-defined
interfaces:

Backbone ORB (DCE/EISOP)

Proprietry ORB

Backbone ORB (IIOP)

CORBA

Customer Invoice Car Lot

RDCS 423 - Real-time Distributed Computer Systems dp2/p11

The Object Web

A major limitation of the existing client/server platform for WWW,
HTTP/CGI, is its speed of operation and lack of flexibility. CGI is a
poor match for OO Java clients, and various attempts to extend CGI
with proprietary servers has limited chance of success (e.g. Netscape's
NSAPI, Microsoft's ISAPI, etc). CORBA provides a vital link between
the Java portable application environment and a multitude of back-end
services. A 3-tier Object Web is emerging:

Java clients communicate directly with CORBA objects as IIOP replaces
HTTP/CGI, but both HTTP and IIOP can share the same network ->
HTTP for HTML page download and IIOP for client-server interactions.

CORBA benefits:
• Avoids CGI bottleneck - direct invocation of methods on server

with minimal client/server overhead.
• Scalable server-to-server structure - business objects on servers can

communicate easily via the ORB -> multiple servers to handle the
load

• Extension of Java applet communications across address
boundaries, languages and networks -> augments Java with range of
object services, e.g transactions, security, trading.

 Browser
 (Client)

HTML/
Java

Internet
TCP/IP

HTTP HTTP CGI
DBMS

Apps

CORBA
IIOP

CORBA
IIOP

ORB

CORBA

TP MON

HTML
docs

BUS
OBJS

RDCS 423 - Real-time Distributed Computer Systems dp2/p12

CORBA - callbacks

To generalise role reversal for client/servers, servers can invoke callbacks
on clients when some urgent event occurs or synchronisation is required:

CORBA - events

An event service allows objects to dynamically register interest in specific
events - objects can dynamically assume supplier or consumer roles. The
two models supported for event communication are push and pull:

An event channel is a CORBA object that is a supplier and consumer of
events:
• push: consumers must register interest in an event channel with a

connect_push_consumer method (and stop receiving events with
disconnect_push_consumer).

• pull: consumers can use the try_pull method to poll for events.
Suppliers can offer events on the channel with an add_pull_supplier
method and suspend events with disconnect_pull_supplier. Point-to-
point events are also supported (without intervening event channels) as
are event proxies to further decouple suppliers and consumers of events.

Client
Object

Callback
Server

Server
Object

Callback

Client
Invocation

ORB

Supplier Event Channel Consumers

Push

ORB

Supplier Event Channel Consumers

Pull

RDCS 423 - Real-time Distributed Computer Systems dp2/p13

width
height
get(row,col)
set(row,col,value)

 IDL
Server Development Client Development

IDL compiler

 Server code Include
file

 Client code Include
file

 Client executable Server executable

IDL compiler

CORBA application example

• Define all objects and their IDL interfaces
• Write clients that will use the objects
• Write servers which provide the objects
• Registers all servers with the ORB

Example: grid object

// IDL in file grid.idl
interface Grid {
readonly attribute short height;
readonly attribute short width;
void set(in short x, in short y, in long value);
long get(in short x, in short y);

}

The IDL compiler is run to produce the header file grid.hh

 Server

Grid object

 Client

Remote Calls

RDCS 423 - Real-time Distributed Computer Systems dp2/p14

// Client.c
#include "grid.hh"
main() {
Grid_var p; // Just like a pointer
// Connect to a remote Grid object
p = Grid::_bind("myGrid:GridSrv", GridHost);
// Can now use it like a local object
cout << "height is " << p->height() << endl;
cout << "width is " << p->width() << endl;
p->set(2,4,123) // do a remote call
cout << "grid(2,4) is " << p->get(2,4) << endl;

}

// Client.c with error handling
. . .
try {
p = Grid::_bind("myGrid:GridSrv", GridHost);

catch(CORBA::SystemException& ex) {
cerr << "A CORBA error occurred: "<< &ex << endl;
exit();

}

Implement the Server Object Interface:
. . .
// C++ in file grid_i.h
class Grid_i : public virtual GridBOAImpl {
. . .
public:virtual void set (CORBA::short n, CORBA::short m,
CORBA::long value, CORBA::Environmental&)

Implement the Server:

// Server.c
#include "grid_i.h"
main() {
Grid_i myGrid(100,100); // Create Grid object

try { // give control to the ORB
CORBA::Orbix.impl_is_ready("myGrid:GridSrv");

catch(CORBA::SystemException& ex) {
cerr << "A CORBA error occurred: "<< &ex << endl;
exit();

}
}

RDCS 423 - Real-time Distributed Computer Systems dp2/p15

Note that the IDL header file (grid.hh) must be available to the client
with a static interface invocation (SII). CORBA also provides a
dynamic interface invocation (DII), e.g:

// Client.c - build request dynamically
. . .
long result;
short x = 2;
short y = 4;

CORBA::Object_var target =
CORBA::Object::_bind ("myGrid:GridSrv", GridHost);

CORBA::Request r(target, "get");

// Stream in the arguments, and make call
r << CORBA::inMode << x << y;
r.invoke();
r >> result; // get result

}

CORBA 3

Started development in 1999 with OMG adoption in 2001 - it provides more
comprehensive support for software components, with some notable features
being:

• Internet: Corba firewall specification - allows IIOP's to more

easily navigate through corporate firewalls.

• Messaging: Message orientated middleware (MOM) specification

- cleaner asynchronous request protocol so clients don't need to be
multithreaded or active during the transaction.

• Components: superset of Enterprise Java Beans (EJBs) for

language neutral component containers.

• Portable Servers: more flexible BOA that better supports transient

objects - requires an instance manager for each object type (which
creates and destroys server objects, or servants).

RDCS 423 - Real-time Distributed Computer Systems dp2/p16

Real-time CORBA (www.omg.org)

Specification V1.0 for Real-time CORBA was first released by OMG in
1999 – the key aim was to provide support for “end-to-end
predictability” by supporting client and server priority assignments and
bounding the latencies of all operation invocations. An early and current
open-source implementation compliant with the specification is the ACE
ORB (TAO) which is built on the Adaptive Communication
Environment (ACE).

Key TAO Features:

• Optimised IDL Stubs & Skeletons: High performance and flexible

(compiled or interpreted) (de)marshalling
• RT Object Adaptor: Dispatches servant operations in O(1) time

regardless of the number of active connections
• Run-time Scheduler: Map application QoS requirements into

hardware resource requirements
• RT ORB Core: Uses a multi-threaded, pre-emptive priority-based

connection and concurrency architecture and allows other plug-in
ORB protocols

• RT I/O Subsystem: Assigns priorities to RT I/O threads so the
schedulability of applications can be met

• Built on ACE which provides a QoS framework: Support for a wide
variety of OS’s

[TAO, 2000]

RDCS 423 - Real-time Distributed Computer Systems dp2/p17

SAP R/3 System (www.sap.com)

The SAP R/3 System is based on the concept of business objects. Real
world objects, for example an employee or a sales order, are modelled as
business objects in business application systems. It provides an integrated
and scalable solution for business orientated client/server and open
distributed systems.

SAP Business Objects can be seen as encapsulating data and business
processes, thus hiding the details of the structure and implementation of
the underlying data. To achieve this SAP Business Objects are
constructed as entities with multiple layers:

• At the core of an SAP Business Object is the kernel, which
represents the object's inherent data.

• The second layer, the integrity layer, represents the business logic of
the object. It comprises the business rules and constraints that apply
to the Business Object.

• The third layer, the interface layer, describes the implementation and
structure of the SAP Business Object, and defines the object's
interface to the outside world.

• The fourth and outermost layer of a Business is the access layer,
which defines the technologies that can be used to obtain external
access to the object's data.

[SAP, 2000]

RDCS 423 - Real-time Distributed Computer Systems dp2/p18

The Business Object Repository (BOR)

All SAP Business Object types and their methods are identified and
described in the R/3 Business Object Repository (BOR).
The BOR contains two categories of object types:

• Business object types
The SAP Business Object types are arranged within the BOR in a
hierarchical structure based on the R/3 business application areas,
such as sales, material management, etc.

• Technical object types
These are items such as texts, work items, archived documents, as
well as development and modelling objects.

The BOR is the central point of access to the SAP Business Objects
through their access methods for external applications.

Business Application Program Interfaces (BAPIs)

External access to the data and processes held in the BOR is only
possible by means of specific methods: BAPIs
e.g. The functionality that is implemented with the SAP Business

Object type "Material" includes a check for the material
availability. Thus, the Business Object type "Material" offers a
BAPI called "Material.CheckAvailability".

To invoke a BAPI from an application program only the interface
information needs to be supplied. A BAPI interface is defined by:

• Import parameters, which contain data to be transferred from the
calling program to the BAPI

• Export parameters, which contain data to be transferred from the
BAPI back to the calling program

• Import/export (table) parameters for both importing and exporting
data

RDCS 423 - Real-time Distributed Computer Systems dp2/p19

Accessing BAPIs

BAPIs are defined as methods of SAP Business Objects in the Business
Object Repository (BOR) and are implemented as function modules.
The separation of a BAPI definition from its actual implementation
allows a BAPI to be accessed in two ways:

• The BAPI can be called in the BOR, e.g. for the Windows 95/NT
a BAPI ActiveX Control allows external client applications to
access the SAP Business Objects in the BOR by invoking BAPIs
through OLE Automation. BAPIs can also be invoked using
SAP's BAPI C++ Class Library through member functions of
C++ proxy classes. Access via a Java Class Library and Delphi is
also supported.

• RFC calls can be made to the function module on which the
BAPI is based, e.g. by using the C/C++ RFC class libraries.

[SAP, 2000]

RDCS 423 - Real-time Distributed Computer Systems dp2/p20

BAPI example

There are a number of BAPIs that provide services across the whole range
of SAP Business Objects, exact functionality being determined by the SAP
Business Object for which it is implemented.
GetList BAPI

This BAPI is used to search for object instances that fulfill certain
selection criteria. An example is CompanyCode.GetList, which
returns a collection of company codes, e.g:
A local object instance with an empty key field is created using
the BAPI Control object:
 Set oCompanyCode =
 oBapiControl.GetSAPObject("CompanyCode")

Then the BAPI CompanyCode.GetList with the parameters Return
and CompanyCodeList is invoked and a table is provided for the
company codes listing:

oCompanyCode.GetList Return:=oReturn,
CompanyCodeList:=otabCompanyCodes

Functional Modules

One of the strengths of the SAP R/3 systems is the large set of
predefined Business Object Functional Modules that can be used
stand alone or easily integrated:

• Logistics: Sales & Distribution, Production Planning & Control,
Project, Materials and Quality Management, Plant Maintenance,
Service and Product Management.

• Financial: Accounting, Control, Investment Management,
Treasury, Enterprise Management.

• Human Resources: Personnel and Organisational Management,
Payroll, Time Management and Personnel Development.

RDCS 423 - Real-time Distributed Computer Systems dp2/p21

Business Frameworks

SAP Functional modules can be encapsulated as Business Components
with access provided by Business Objects through their corresponding
BAPIs. Business Objects are designed to change at a much slower rate
than the underlying software technologies, so they provide a stable
interface to Business Components. SAP uses Application Link Enabling
(ALE) to permit cross-component mapping of business processes.

E-commerce Integration

MySAP.com was introduced in mid-2000 to provide a preconfigured
enterprise portal to interface with SAP R/3 so as to better support web-
based B2B transactions. In particular, mySAP preconfigured
"Marketplaces" support the development of "e-business hubs" to allow
suppliers and customers to interact through automated auction and
bidding systems.

[SAP, 2000]

RDCS 423 - Real-time Distributed Computer Systems dp2/p22

SOAP (Simple Object Access Protocol)

Developed originally by Microsoft, but now submitted for W3C
standardization as XP (XML protocol), SOAP allows XML (eXtensible
Markup Language) messages to be exchanged between enterprise
portals particularly for B2B data exchange. SOAP allows an enterprise
to structure business data as XML messages - the specification supports
two formats:

• Self describing for EDI (Electronic Data Interchange) data exchange
• RPC (Remote Procedure Call) style interactions for object method

invocation

SOAP message formats:
• Envelope - XML schema describes the message format and

serialisation protocol
• Header - optional extension capability (e.g. security, transactions, etc)
• Body - application defined XML formatted data

Example Stock Quotation Full Request (from Spec V1.1):
POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="Some-URI">
 <symbol>DIS</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example Response Body only (from Spec V1.1)::
 <SOAP-ENV:Body>
 <m:GetLastTradePriceResponse xmlns:m="Some-URI">
 <Price>34.5</Price>
 </m:GetLastTradePriceResponse>
 </SOAP-ENV:Body>

RDCS 423 - Real-time Distributed Computer Systems dp2/p23

Enterprise Portals

An immediate technology framework predecessor to the current “web
services” technologies – they provide a single electronic point of
presence for an enterprise that allows clients (other businesses and
customers) to flexibly access an enterprise's data, transaction and
processes:

Example: Iona's iPortal Suite architecture (www.iona.com) - combines
all server platforms with application integration, legacy system
connectivity and server administration:

[Iona Technologies, 2000]

[Iona Technologies, 2000]

RDCS 423 - Real-time Distributed Computer Systems dp2/p24

Web Service Architectures (www.w3.org/TR/ws-arch)

“Web services” is a term
used to describe a set of
distributed software
components that interact
over the Internet to
collectively provide the
infrastructure for a web-
enabled application. The
distributed architectures
used to provide these
services follows a
conventional client/server
structure:

Web services group together
a number of technologies
supported by common
Internet protocols (HTTP, &
TCP) – the core or basic
layers on that are XML and
SOAP. Less well defined,
but emerging is a common
description language for web
services (WSDL), and a
range of basic services
(Universal Description,
Discovery and Integration or
UDDI).

[W3C, 2002]

[W3C, 2002]

RDCS 423 - Real-time Distributed Computer Systems dp2/p25

Microsoft’s DNA (COM, DCOM, COM+) →→→→ .NET Framework

In DNA applications, business logic was usually implemented as COM
or COM+ components which provided the middle layer between client
ASP pages and back-end DBMS applications. Communications between
components on different nodes was only possible via DCOM which
provided security and authentication infrastructure.

The .NET framework allows business
logic to be written in ASP.NET, and
supports more options for distributed
communication with .NET remoting
(which supports both TCP and HTTP
channels). DCOM for distributed
communication among COM objects is
also supported.
The .NET remoting TCP channel doesn’t
provide the strong security of DCOM, but
the configuration overhead is much
lower.

Data can be stored with ADO.NET objects – into datasets that act as
caches – these datasets can be automatically serialized into XML and
passed via SOAP.

[Microsoft, 2002]

[Microsoft, 2002]

RDCS 423 - Real-time Distributed Computer Systems dp2/p26

Trends In Middleware Research

The primary focus currently is towards reflective middleware (i.e. an
introspective and adaptive capable software bus to better support
dynamic distributed mobile environments):

Introspection (or inspection):

Interfaces can be dynamically inspected, e.g:

Adaptation:

Interfaces can be dynamically replaced, e.g:

Combined with this trend is the development of Model Driven middleware
architectures and Meta-Object Protocols → highly configurable
‘technology neutral’ middleware specified by design model (see OMG).

[Soltysiak et al, 2002]

[Moreira et al, 2002]

