
RDCS 423 - Real-time Distributed Computer Systems dp1/p1

DISTRIBUTED PROCESSING SOFTWARE
ENVIRONMENTS

The environment or framework for supporting distributed processing can
usefully be divided into three main approaches:

• Distributed processing is supported via a concurrent programming
language through a transparent interface (e.g. REC in Ada 83 or RSC in
Ada 95, other examples are provided in Occam and RMI in Java).

• Distributed processing is supported via a non-concurrent language through
a library of routines or APIs that can be called to provide distributed
communication primitives (e.g. RPC, PVM and even NFS).

• Distributed processing is supported via middleware - language
independent object brokers (e.g. CORBA, DCOM and WWW specific
through HTTP/CGI).

Remote Entry Calls (REC) in Ada 83

This approach was developed by Atkinson (1988) in the DIADEM
(Distributed Ada Demonstrated) project. It provides a layered
communication model for the Ada remote rendezvous:

REC

Application
Layer

Caller Task's
thread of
control

Send

Recv

SCI SCI

Rec

Start-up

Send

Loc Call

Accept
Accept

Remote
Application
Layer

Remote
Rendezvous
Layer

Remote
Rendezvous
Layer

Entry Port
Task

Agent Task
Called Task's
thread of control

Caller's REC
Environment Called REC

Environment

REC procedure

Comms
Layer
TCP/IP
UDP

RDCS 423 - Real-time Distributed Computer Systems dp1/p2

Note that the aim of this approach is to make the only layer visible to the
calling task environment the remote rendezvous layer → allows the lower
level layers to be replaced without changing the application code.

The remote rendezvous layer maintains a map of software (or virtual)
nodes and physical nodes which includes the physical port address. Also
note that no explicit mechanism is provided for the distribution of code to
the virtual nodes.

Remote Subprogram Calls (RSC) in Ada 95

Ada 95 effectively removes the software management problem inherent in
code distribution by defining partitions. All code for the distributed
system is contained in one logical program, and the target nodes for the
code are defined as separate partitions in the one program. All references
to data or subprograms calls across partitions are remote accesses.

A remote subprogram call (RSC) invokes the execution of a subprogram in
another partition. A partition communication subsystem (PCS) provides for
inter-partition communication through a package called System.RPC
which uses the system's Remote Procedure Call primitives.

A Partition_ID is used to access each partition and synchronous RPC
(Do_RPC) and asynchronous RPC (Do_APC) calls are supported. An
Ada.Streams package is also provided to support the naming of remote
subprograms, the parameters sent to a remote subprogram and the results
returned from a remote subprogram.

Remote Procedure Calls (RPC) under UNIX

The required communication layers are provided by system RPC services,
which are based on a client/server model. The communication protocol is
invisible in RPC, but knowledge of the remote processor, RPC program,
RPC procedure and version number is required:

RDCS 423 - Real-time Distributed Computer Systems dp1/p3

Under UNIX a typical RPC call is:

char *host, *in, *out;
u_long prognum, versum, procnum;
xdrproc_t inproc, outproc;

 callrpc (host, prognum, versnum, procnum, inproc, in, outproc, out);

where:
host is the address of host machine name

 prognum and procnum are the program and procedure
 number defined in the server
versnum is the version number of the program
in and out are addresses of the data structures holding the remote

procedure parameters and return results respectively
inproc and outproc are functions for encoding/decoding the

procedures parameters and its results via XDR (eXternal
Data Representation)

The RPC model couples the application far more tightly to the underlying
communication layer than the REC or RSC models and is less portable,
but has the advantage of less run-time overhead.

Client Server

idle

Client
task

Daemon
task
Call service

Return results

Service
executes

Call_RPC

Return reply

RDCS 423 - Real-time Distributed Computer Systems dp1/p4

Parallel Virtual Machine (PVM)

PVM is a set of libraries that emulates a hetrogeneous parallel and/or
distributed computing framework.

Principle Features:

• User-configured host pool - application tasks execute on a

dynamically selected set of machines
• Low-level access - application programs can exploit specific

capabilities of particular machines
• Task-based parallelism - independent sequential threads of control

alternating between computation and communication
• Explicit message-passing model - tasks cooperate by explicitly

sending and receiving messages
• Heterogenous machine architecture - support for different machine

types, networks, data types and applications
• Multiprocessor support - uses native message passing on

multiprocessors

PVM system components:

• daemon (pvmd3) - runs on all machines comprising the virtual

machine
• library of PVM interface routines (libpvm3.a) - set of primitives

needed for intertask cooperation, creating tasks and modifying the
virtual machine

PVM tasks:

• Each task is identified by a task identifier (TID)
• Applications or parts of applications may be composed of a group

of tasks and the task joining a group is assigned an instance
identifier for that group

RDCS 423 - Real-time Distributed Computer Systems dp1/p5

PVM programming methodology:

• All tasks correspond to precompiled programs and their object files

are accessible to all machines in the pool
• Execution is initiated by running a master program which usually

starts all other PVM tasks (although tasks can be started manually)
• Tasks interact with each other via message passing, explicitly

identifying each other with the system assigned TIDs

Example:

main(){
int cc, tid, msgtag;
char buf[100];

printf("Task t%x \n", pvm_mytid());
cc = pvm_spawn("hello_other", (char**)0, 0,"",1,&tid);
if (cc ==1) {

msgtag = 1;
pvm_recv(tid, msgtag);
pvm_upkstr(buf);
printf("From t%x: %s\n", tid, buf);

} else
printf("Cant start hello_other\n");

pvm_exit();
}

#include "pvm3.h"
main() { /* hello_other program mainline */

int ptid, msgtag;
char buf[100];

ptid = pvm_parent();
strcpy(buf,"Hello world from ");
gethostname(buf + strlen(buf), 64);
msgtag = 1;
pvm_initsend(PvmDataDefault);
pvm_pkstr(buf);
pvm_send(ptid, msgtag);
pvm_exit();

}

RDCS 423 - Real-time Distributed Computer Systems dp1/p6

client client client

server
network

NETWORKED FILE SYSTEMS

The first networked file systems
required users to log onto a central
machine on which the shared files
were located. As these file servers
quickly became overloaded, a way
was needed to share files on
several machines.

Unix System V introduced RFS which had good UNIX semantics but poor
performance. Research at CMU lead to the Andrew file system, which was
commercialised and eventually became part of the Distributed Computing
Environment (DCE). The most successful protocol has been the network
file system (NFS) designed and implemented by Sun Microsystems.

NFS approaches operate as a client server application:
• The server receives remote-procedure-call (RPC) requests from its

various clients.
• The parameters must then be marshalled into a message.
• Marshalling includes replacing pointers by the data to which they point

and converting binary data to the network byte order.
• The message is unmarshalled at the server and processed as a local file

system operation.
• The result must be similarly marshalled and sent back to the client.

which then splits up the result and returns it to the calling process.

The NFS protocol is also stateless:
• The server does not maintain any information about which clients it is

serving or about the files that they currently have open
• Read requests include the identity of the user, file handle, offset in the

file to begin the read, and the number of bytes to be read.
• The server then opens the file, verifys that the user has read permission,

seeks to the appropriate point, reads the contents, and closes the file.
• In practice, the server also caches recently accessed file data but the file

handle allows the server to reopen the file if it is pushed from the cache.

RDCS 423 - Real-time Distributed Computer Systems dp1/p7

The interactions between the client and server daemons when a remote file
system is mounted are shown below:

1. The client's mount process
sends a message to the well-
known port of the server's
portmap daemon, requesting
the port address of the
server's mountd daemon.

2. The server's portmap
daemon returns the port address of its server's mountd daemon.

3. The client's mount process sends a request to the server's mountd
daemon with the pathname of the file system that it wants to mount.

4. The server's mountd daemon requests a file handle for the desired
mount point from its kernel (the file handle is returned to the client's
mount process if successful and the mount system call is performed).

Interaction at I/O completion:

1. The client's process does a

write system call.
2. The data to be written is

copied into a kernel buffer
on the client, and the write
system call returns.

3. An nfsiod daemon awakens
inside the client's kernel,
picks up the dirty buffer, and sends the buffer to the server.

4. The incoming write request is delivered to the next available nfsd
daemon running inside the kernel on the server. The server's nfsd
daemon writes the data to the appropriate local disk, and waits for the
disk I/O to complete.

5. After the I/O has completed, the server's nfsd daemon sends back an
acknowledgment of the I/O to the waiting nfsiod daemon on the
client. On receipt of the acknowledgment, the client's nfsiod daemon
marks the buffer as clean.

RDCS 423 - Real-time Distributed Computer Systems dp1/p8

Server Message Block (SMB)

SMB is a protocol for sharing files, printers, serial ports, and
communications abstractions such as named pipes and mail slots between
computers. SMB first appeared in the IBM PC (1985) and then as a
Microsoft’s network file sharing protocol (1987). Microsoft and others
subsequently developed the protocol further.

SMB is a client-server, request-response protocol. The only exception
being when the client has requested opportunistic locks (oplocks) and the
server subsequently has to break an already granted oplock because
another client has requested a file open with a mode that is incompatible
with the granted oplock. In this case, the server sends an unsolicited
message to the client signalling the oplock break.

Servers make file systems and other resources (printers, mailslots, named
pipes, APIs) available to clients on the network.

Clients connect to servers using TCP/IP (actually NetBIOS over TCP/IP as
specified in RFC1001 and RFC1002), NetBEUI or IPX/SPX:

OSI TCP/IP
Application SMB
Presentation Application
Session NetBIOS NetBIOS NetBIOS
Transport IPX NetBEUI DECnet TCP/UDP TCP/UDP
Network IP IP
Link

802.2,
802.3,802.5

802.2/
802.3,802.5

Ethernet V2 Ethernet V2 Ethernet or
others

After connection, clients send commands (SMBs) to the server to access
file shares, open files, read and write files, etc.

 The actual protocol variant the client and server will use is negotiated
using the negprot SMB which must be the first SMB sent on a connection.
The first protocol variant was the Core Protocol which could handle a
basic set of operations that included:

• connecting to and disconnecting from file and print shares
• opening and closing files and print files
• reading and writing files

RDCS 423 - Real-time Distributed Computer Systems dp1/p9

• creating and deleting files and directories
• searching directories
• getting and setting file attributes
• locking and unlocking byte ranges in files.

Samba and Microsoft's Common Internet File System (or CIFS) use the
latest variants of this protocol. There are many other implementations by
different vendors (some variants introduced new SMBs and some changed
the format of existing SMBs or responses).

A typical SMB protocol exchange

The client sends a negprot SMB to the
server, listing the protocol dialects that
it understands. The server responds with
the index of the dialect that it wants to
use, or 0xFFFF if none were acceptable.
Dialects more recent than the Core and CorePlus protocols supply
information in the response to indicate their capabilities.

The client can then proceed to logon to
the server with a sesssetupX SMB. The
response indicates whether or not they
have supplied a valid username
password pair and if so, can provide
additional information. The UID in the response must be submitted with
all subsequent SMBs on that connection to the server.

The client can then proceed to connect to
a tree. The client sends a tcon or tconX
SMB specifying the network name of the
share that they wish to connect to, and
the server responds with a TID that the
client will use in all future SMBs relating to that share. Having
connected to a tree, the client can now open a file with an open SMB,
followed by reading it with read SMBs, writing it with write SMBs, and
closing it with close SMBs.

Client Server negprot Command

negprot Response

Client Server sesssetupX Command

sesssetupX Response

Client Server tconX Command

tconX Response

