
RDCS 423 - Real-Time Distributed Computer Systems rl2/p1

FEATURES OF THE JAVA PROGRAMMING
LANGUAGE FOR REAL-TIME
DISTRIBUTED APPLICATIONS

Some comparisons of the Java language compared to Ada and C++

• Java supports single inheritance for object classes (but multiple

inheritance for interfaces) like Ada, which is more restrictive than
C++.

• Java supports packages like Ada to collect related classes together.

• Unlike C++ and Ada, Java provides automatic garbage collection.

• Like Ada, Java provides strong data typing, array-bounds checking,
exceptions, but not pointers.

• Like Ada, but unlike C++, Java supports multi-threading

Client/Server using Java via applets

The Java language started as a tool to create applets (mini-applications)
for the World Wide Web:

1. Web browser requests an applet in an HTML page (HTML
<applet> tag, which has the class filename).

2. Browser requests applet from server.
3. Load and execute applet (size of region on HTML page owned by

the applet tag).
4. Discard applet.

 Client Server
1

2

3
4

RDCS 423 - Real-Time Distributed Computer Systems rl2/p2

Distributed Code and Data

Usage as applets in web pages is just the most extensive application to
date. Java also provides for distribution of code and data across multiple
platforms. There are some important attributes required for a general
mobile code system:

• Safe environment for code - precise control of applet environment

such as memory access, system calls, etc.

• Platform-independent - cross platform services on variety of
operating systems and hardware.

• Life cycle control - run-time support for loading, executing and
unloading code and data.

• Distribution - secure transfer of code across network, certification of
applets, authentication of clients and servers.

The format of distributed code is low-level but machine-independent
bytecodes. Translation of bytecodes to machine-dependent instructions
is performed by the Java Virtual Machine.

Applet Store

Java Compiler

Java Applet Bytecode Verifier

Class Loader

Java Run-
Time
Interpreter

Just-in-
Time
Compiler

SERVER: CLIENT:

Bytecodes

 Platform

JVM

TCP/IP

RDCS 423 - Real-Time Distributed Computer Systems rl2/p3

Java Language - Threads

For real-time distributed applications involving multiple tasks the
support provided in the Java language for multi-threading is an
important capability, e.g: user interaction through multiple graphical
displays, acquisition of data from instrumentation, processing and
display of that data, control of plant and processes in response to user
requests requires multiple concurrent threads of execution.

Thread Creation

A separate thread of control is created through a thread object, e.g:
 Thread job = new Thread();

To start the thread job, its start method is called, which spawns the
new thread of control. The new thread begins execution when the JVM
invokes the new thread's run method. Consider an example:

Class TwoThreads extends Thread {
string threadname; // thread name to be printed
int delay; // delay time msec

TwoThreads(string name, int time) {
threadname = name;
delay = time;

}

public void run() {
try {

for(;;) {
System.out.print(threadname + " ");
sleep(delay);

}
} catch (InterrruptedException e) {

return; // thread ends
}

}

public static void main(String[] args) {
new TwoThreads("Thread 1",50).start();
new TwoThreads("Thread 2",150).start();

}
}

RDCS 423 - Real-Time Distributed Computer Systems rl2/p4

Thread Mutual Exclusion

Synchronization is required where multiple threads need to share a
resource to eliminate the possibility of corruption of the data in that
resource and/or deadlock occuring. A synchronized method is used to
lock an object, i.e. enforce mutually exclusive access to that object. For
example, consider a multithreaded bank account object:

class Account {
private double balance;
public Account (double InitialDeposit) {
balance = InitialDeposit;

}
public synchronized double getBalance() {

return balance;
}
public synchronized void Deposit (double amt) {

balance += amt;
}

}

The balance field is protected by the synchronized access methods in
the above example. An alternative approach is to use synchronized
statement blocks, e.g:

 public static void abs(int[] values) {
synchronized (values) {
for (int i=0; i < values.length; i++) {

if (values[i] < 0)
values[i] = -values[i];

}
}

}

i.e. the synchronizng lock is performed on the values field above so
that it is cannot be changed by other threads of execution during
execution of the enclosed statement block. The locked object does not
need to be accessed in the statement block - it may just serve as a lock.

RDCS 423 - Real-Time Distributed Computer Systems rl2/p5

Thread Communication

Two methods are defined to enable threads to communicate: wait and
notify, i.e. a thread may wait for an event to occur and be notified by
another thread that it has occurred:

synchronized void doWhenCondition() {
while (!condition)
wait();
... Operations executed after wait on condition

}

Note the use of synchronized to ensure mutual exclusion when
condition is accessed and the atomic release of the lock on
condition when the wait is performed. Other forms of wait allow a
timeout to be specified, e.g:

 public final void wait(long timeout)
throws InterruptedException;

// waits timeout msecs

A waiting thread will be awoken by notify and if it was waiting on
condition it will find it set, e.g:

synchronized void changeCondition() {
condition=TRUE;
notify();

}

If more than one thread is likely to be waiting, then a notifyAll
should be used. Consider a multi-threaded queue example:

class Queue {
Element head,tail;

public synchronized void append (Element p) {
if (tail == null) head = p;
else tail.next = p;
p.next = null;
tail = p;
notifyAll(); // Inform readers queue has data

}

RDCS 423 - Real-Time Distributed Computer Systems rl2/p6

public synchronized Element get() {
try {

while (head == null) wait();
} catch (InterruptedException e) {

return null;
}
Element p = head; // Get queue element
head = head.next; // Remove from queue
if (head == null) tail = null;
return p;

}
}

Thread Scheduling

The scheduling approach used for Java threads is priority based run-until-
blocked with round-robin. That means that the threads at the highest
priority level all get some processor time until they suspend to sleep for a
time delay or execute a system or thread function that is blocked. Lower
priority threads are not guaranteed processor time, but if the operating
system supports time-slicing then lower priority threads will also receive
processor time related to their priority level. setPriority is used to
change thread priorities (between MIN_PRIORITY and MAX_PRIORITY
from the initial default (which is the same priority as the thread spawning
it) and getPriority returns the thread priority level.

Some other useful methods which influence thread scheduling are:

 public static void sleep(long time)

throws InterruptedException;
// delays at least time msecs

public static void yield()
// suspends thread until scheduler reruns

Consider an application that produces a list of words with each thread
dedicated to producing a single word. It is run with a first parameter
indicating if threads are to yield, the second parameter is the number of
words to print, and the final parameter is the list of words to print:

RDCS 423 - Real-Time Distributed Computer Systems rl2/p7

class Babble extends Thread {
static boolean doYield;
static int howOften;
String word;

Babble(String whatToSay) {
word = whatToSay;

}

public void run() {
for (int i = 0; i < howOften; i++) {
System.out.print(word + " ");
if(doYield) yield();

}
}

public static void main(String[] args) {
howOften = Integer.parseInt(args[1]);
doYield = new Boolean(args[0]).booleanValue();

Thread thread = currentThread();
thread.setPriority(Thread.MAX_PRIORITY);
for (int i = 2; i < args.length; i++)
new Babble(args[i]).start();

}
}

Run set for not yielding/yielding, i.e:
 Babble false 2 thread1 thread2
→ output string could be thread1 thread1 thread2 thread2
 Babble true 2 thread1 thread2
→ output string will be thread1 thread2 thread1 thread2
i.e. thread yielding has ensured a fairer distribution of processor cycles.

Thread Suspension and Termination Example

Thread spinner;
public void userHitCancel() {
spinner.suspend();
if(askYesNo("Really Cancel?"))

spinner.stop();
else

spinner.resume();
}

RDCS 423 - Real-Time Distributed Computer Systems rl2/p8

Thread Synchronization

Threads can synchronize through a join method, i.e. a thread can spawn
another thread then wait with a join for that thread to complete, e.g:

class CalcThread extends Thread {
private double Result;

public double result() {
return Result;

}

public double calculate() {
... Do some calculations

}

public void run() {
Result = calcuate();

}

}

class Join {
public static void main(String[] args) {
CalcThread calc = new CalcThread();
calc.start();
... Do something else
try {
calc.join();
System.out.println("result="+calc.result());

} catch (InterruptedException e) {
System.out.println("No answer->interrupt");

}
}

}

Note that threads can be of two types: user and daemon - all threads
start as user type and can be made daemon type with the
setDaemon(true) method. The application runs until the last user
thread terminates, and then any remaining daemon threads are
terminated.

RDCS 423 - Real-Time Distributed Computer Systems rl2/p9

Runnable interface

The thread class implements the Runnable interface so that any object
can be made runnable by passing it to the Thread constructor. The
advantage of this method of thread creation is that it is possible to turn
an object that has been extended already from some class into a thread
(which wouldn't otherwise be allowed due to the single inheritence
restriction). Consider a previous example recast to use Runnable:

Class TwoThreads implements Runnable {
string threadname; // thread name to be printed
.
.
.
public static void main(String[] args) {

Runnable thread1 = new TwoThreads("Thread 1",50);
Runnable thread2 = new TwoThreads("Thread 2",100);
new Thread(thread1).start();
new Thread(thread2).start();

}
}

i.e. A new class TwoThreads that is runnable is created, and then two
objects of this class are created (thread1 and thread2) and finally new
Thread objects are created for both and started.

Thread Groups

The idea behind thread groups is to provide protection from interference
to a thread by threads outside its group. A hierarchy can also be
established, i.e. thread groups within thread groups. The group of a
thread is defined in the thread constructor:

 public Thread(ThreadGroup group, String threadName)

A maximum priority can be set for a group which ensures all threads in
that group cannot raise their priority above that. Along with other group
specific methods, a checkAccess method is provided to determine if
the current thread is allowed to modify this group.

RDCS 423 - Real-Time Distributed Computer Systems rl2/p10

REMOTE METHOD INVOCATION

For basic communication Java supports sockets but sockets require the
client and server to engage in applications-level protocols to encode and
decode messages, and the design of such protocols can be error-prone.

An alternative is Remote Procedure Call (RPC), which translates poorly to
distributed object systems, where communication between program-level
objects residing in different address spaces is needed. To match the object
invocation semantics, Remote Method Invocation (RMI) can be used.

Other RMI type systems can be adapted to handle Java objects, but these
other systems, e.g. CORBA, must support a multilanguage environment and
thus must have a language-neutral object model. Java's RMI can assume the
environment of the Java Virtual Machine (JVM) on all systems, so
advantage can be taken of the Java object model where possible.

In the Java distributed object model, a remote object is one whose methods
can be invoked from another JVM, potentially on a different host. A
method invocation on a remote object has the same syntax as a method
invocation on a local object.

Consider a simple example with a count increment on a remote server:

public class IncRMIClient
{ public static void main(String args [])
{ System.setSecurityManager(new RMISecurityManager());
try {
IncRMI myInc = (IncRMI)Naming.lookup("rmi://"

+args[0] + "/" + "my IncRMI");
myInc.increment();

} catch(Exception e) {
System.out.println("Exception" + e);

}
}

}

RMI ORB

IncRMIClient
RMI
on
TCP/IP RMI ORB

IncRMIServer

RDCS 423 - Real-Time Distributed Computer Systems rl2/p11

public interface IncRMI extends java.rmi.remote
{
public int increment() throws java.rmi.RemoteException;

}

public class IncRMIImpl extends UnicastRemoteObject
implements IncRMI

{
private int count;

.

.
public int increment() throws RemoteException
{

count++;
return count;

}
}

public class IncRMIServer
{ public static void main(String args [])
{ System.setSecurityManager(new RMISecurityManager());
try {
IncRMI myInc = new IncRMIImpl("my IncRMI");
System.out.println("IncRMI Server ready");

} catch(Exception e) {
System.out.println("Exception" + e);

}
}

}

Native Methods

Java supports native methods written in other languages (typically C/C++)
with obvious limitations on portability and safety protection, e.g:

 public native void unlock() throws IO Exception;

The Java program must load the native language executable (which is stored
as a shared or dynamic link library), e.g:

System.loadLibrary("Unlock");

The native language function or procedure can then be called as a Java
method with the same syntax as other methods.

RDCS 423 - Real-Time Distributed Computer Systems rl2/p12

Extended Java Environments for Real-Time Distributed
Systems (ref: www.java.sun.com)

Embedded Java (V1.1 - Jan 1999 -> J2ME Dec 2002):

The EmbeddedJava application environment was the Java technology
aimed at devices that have dedicated functionality and limited memory. It
comprised a JVM, a set of Java -based class libraries, and a set of tools.
The tools could be used to configure and compile to the method level from
Java class libraries a software environment that is customized to the needs
of device applications. This software environment could then be burned
into ROM. Now superceded by J2ME (Micro Edition) which provides
enabling technologies of CLDC (Connected Limited Device
Configuration) and MIDP (Mobile Information Device Profile) and
various Wireless APIs.

Jini (V1.2 - Dec 2001):

Jini connection technology enables JVM based devices to plug together
to form an impromptu community with each device providing services
that other devices in the community can use. The Jini technology
provides a layer above RMI and offers discovery and join protocols, a
lookup service, a leasing and transaction mechanism, and the ability to
move Java objects between JVMs. Jini Technology is made up of a core
platform (JCP) and an extended platform (JXP).

JavaSpaces (V1.2 - April 2002):

JavaSpaces is a Jini service to connect JVM-based network resources.
JavaSpaces is different to conventional databases since a more loosely
coupled repository of information is provided, the identity of a client or
a server is no longer relevant; data packets are treated just like any other
object posted to the space as an anonymous service. In addition to data,
a space can find, match and reference objects by both type and value,
meaning they can store objects as information or behavior. It effectively
consists of methods that enable entries to be put into a shared space.

RDCS 423 - Real-Time Distributed Computer Systems rl2/p13

Real-time Specification for Java (final – Jan 2002):

The approach is to introduce an API addressing the main areas of
importance for a language supporting Real-time systems development,
while as much as possible retaining the original "Write Once, Run
Anywhere" philosophy behind the Java programming language. Other
key principles were to ensure predictable execution at the expense of
general purpose computing features, and to avoid extending the syntax
of the Java language itself.

• Thread scheduling and dispatch: allow implementations to provide

their own scheduling mechanism but provide a basic scheduler that is
priority based (at least 28 levels) and pre-emptive.

• Memory management: while allowing memory management to be as
automated as possible, tight control over garbage collection
mechanisms must also be supported.

• Synchronization and resource sharing: support priority inversion
control mechanisms.

• Asynchronous event handling, transfer of control and thread
termination: extend exception handling to allow threads to change
the focus of control of other threads and terminate them safely.

• Direct physical memory access: introduce a class that allows byte-
level access to physical memory and allows objects to be constructed
in physical memory.

The RTSJ specification is a resource for migration for better support in
J2ME for RT applications.

JavaIDL (J2SE 1.4 - Dec 2001)

From JDK 1.2 the Java programming environment has included some
elementary CORBA compliance. The idlj compiler in J2SE 1.3
provided CORBA 2.3 compliance "in some areas but not in others".
The J2SE 1.4 ORB platform introduced Portable Object Adaptor
(POA) and GIOP 1.2 support "along the lines of compliance with
CORBA 2.3" and some parts of the CORBA 2.3.1 specification are
supported.

