
RDCS 423 - Real-time Distributed Computer Systems rl1/p1

REAL-TIME HIGH-LEVEL CONCURRENT
PROGRAMMING LANGUAGES AND SOME
FEATURES OF ADA AND JAVA

Historical Development of RT languages

• Early systems were programmed in assembly language - high-level

languages were not well supported and were not efficient → but
led to high development costs, maintenance problems and
portability problems

• High-level languages were pressed into service, e.g. FORTRAN,
PASCAL, C, etc

• Due to the deficiencies, specialised languages were developed for
embedded systems programming, e.g. in the U.K. - CORAL 66
(defence) and RTL/2 (industry), in the U.S. - JOVIAL (defence).
All these languages are sequential and require operating system
support for real-time features → portability was still a problem
area.

• Current generation RT languages, e.g. Ada 95, Modula-3, Real-
Time Euclid, ESTREL, PEARL, CHILL, Mesa, Occam-3 all
provide explicit support for concurrency and inter-process
communication but do not consider timing constraints and fail to
provide predictable temporal behaviour of programs.

Performance Criteria for RT languages

• Security - automatic detection of programming errors, preferably

by the compiler or at the least by run-time support.

• Readability - influenced by choice of keywords, ability to define
types and support for program modularization. Important for
maintainability of the code, but usually increases program length.

RDCS 423 - Real-time Distributed Computer Systems rl1/p2

• Flexibility - all required operations must be expressed in a clear
and coherent manner to limit operating system calls or assembly
language calls.

• Simplicity - useful to minimise compiler complexity,
programmer training cost and programmer errors - important for
expressive power (with flexibility) and useability.

• Portability - hardware independence is a useful feature → the
language must be able to isolate machine dependent parts of the
program.

• Efficiency - mechanisms leading to unpredictable run-time
overheads should be avoided.

The final language design is necessarily a balance between these
criteria and any application specific criteria

Languages to consider

Most studies of RT languages have focussed on Ada, Modula, Occam,
or Concurrent-C. With performance enhancements, Java is only
relatively recently been a candidate for addition to this list.

The Ada language supports the principles of modern software engineering -
modularity, strong typing, data abstraction, information hiding, overloading,
exception handling, and structured control statements.

In addition to the programming features also supported by other
languages, such as control structures, arrays and records, subprograms,
types, and access types (pointers), when introduced (and then enhanced
with Ada 95) Ada had some features which were fairly unique:

• Attributes - predefined parameters that yield the characteristics of
various items, e.g. INTEGER'LAST on a 16-bit machine would
yield 32,767 → the aim is to improve software portability.

• Packages - a grouping of related resources (often a compilation
unit) which allows separation of interface information to users of the
package from the implementation details → encapsulation.

RDCS 423 - Real-time Distributed Computer Systems rl1/p3

• Generics - templates from which procedures, functions and packages
can be created → purpose is to minimise code duplication.

• Exceptions - a specific mechanism is provided to allow the

software to identify the type of exception and handle run-time errors
e.g. CONSTRAINT_ERROR is raised when an array index leaves a
defined range.

• Tasking - support for concurrent execution by allowing code units

(called tasks) to be effectively executed in the same time period.
Inter-task synchronization and communication is handled via a
rendezvous mechanism.

• Low-level programming - support for embedded systems through

bit manipulation, hardware interrupts, machine specific instructions
and addressing.

• Hierarchical Libraries: Ada 83 libraries had a mostly 'flat' structure,

Ada 95 allows packages to have child units which can be added
without affecting the parent of the parent's clients.

• Programming by Extension: new features can be added without

requiring modification or recompilation of any of the existing
software.

• Classwide Programming: abstraction to group the common

properties of related types in a class of types - addition of a
"tagged" type.

• Protected Objects: allowing concurrent tasks to share data in a

protected manner, i.e. only one task at a time can update shared data
very efficiently.

Reference Text: Naiditch, D. J. Rendezvous with Ada 95, 2nd ed.:
Wiley 1995

On-line Tutorial: Lovelace by David A. Wheeler (see the unit web page)

RDCS 423 - Real-time Distributed Computer Systems rl1/p4

FEATURES OF ADA TO SUPPORT REAL-TIME
DISTRIBUTED PROCESSING

TASKING

Concurrent processing in Ada is called tasking and units of code that
execute concurrently are called tasks. On single processors, interleaved
concurrency is used to produce the effect that all tasks are executing
simultaneously. Overlapped concurrency can also be supported on
multiple processors, but in either case, tasks are used whenever several
activities are to be performed in the same time period.

Non-interfacing tasks:

Tasks that do not communicate with each other have the following form:

 task task name; -- specification
 task body task name is -- body
 declarations
 begin

statements
 end task name;

As an example consider the following two tasks:

 procedure Activity is

task Exercise_Jaw;
 task body Exercise_Jaw is

begin
Chew_Gum;

 end Exercise_Jaw;

 task Exercise_Legs;
 task body Exercise_Legs is

begin
Run_Fast;

end Exercise_Legs;

 begin

null; -- must have at least one executable statement
 end;

RDCS 423 - Real-time Distributed Computer Systems rl1/p5

Tasks must always be embedded in the declarative part of another unit -
they cannot be a separate compilation unit (although a task body can be
a separately compiled subunit). The unit in which tasks are embedded is
referred to as a master unit or environment task and the tasks are
dependent on it.

Interfacing tasks without data transfer:

Such tasks are used when only synchronization is required and these
tasks require two additional clauses:

 task task name is
entry entry name (parameter definitions);

 end task name;

i.e. the task specification has an entry clause with a name and optional
parameters (used for data transfer). This clause associates an entry
identifier with one or more entry points in the task body. The entry
points are defined by accept statements and the entry identifier, with
the following form:

 accept entry name (parameter definitions) do
statements

 end entry name;

Taking a simple example to illustrate this:

 procedure Get_Data is
task See_If_Data is -- task specification

 entry Data_Check;
 end See_If_Data;
 task body See_If_Data is -- task body
 begin
 accept Data_Check do

Go_Get_Data;
end Data_Check;

 end See_If_Data;
•

 •

RDCS 423 - Real-time Distributed Computer Systems rl1/p6

 task Process_Data;
 task body Process_Data is

begin
See_If_Data.Data_Check

 end Process_Data;
•

 •

The calling task (Process_Data) must identify the acceptor task
(See_If_Data) and the entry point name (Data_Check). The dot notation is
used to specify an entry point (which cannot be circumvented with a use
clause), but a task entry point can be renamed as a procedure, e.g:

 task body Process_Data is
procedure Test_Data renames

See_If_Data.Data_Check
 begin

Test_Data;
 end;

Note that an accept statement can only be placed in a task body and
cannot appear in the statement part of a procedure. In Ada, the meeting
of two tasks in this way is known as a rendezvous. Where an acceptor
task is prepared to accept a call before the call is made the following
diagram is applicable:

Calling task

Task called

Rendezvous

Execution of
accept

Acceptor
task

reached accept
- waiting for call

Task suspended

Active task

RDCS 423 - Real-time Distributed Computer Systems rl1/p7

The other possible rendezvous situations are:
• where the call is made before the acceptor task is prepared to accept

it, in which case the calling task just waits until its call is accepted.
• where the call is made at the same instant that the acceptor task is

prepared to accept it, both tasks rendezvous immediately and neither
task waits.

In the event that a task reaches its accept statement only once, yet is
called twice, a Tasking_Error exception is raised since the task with the
accept statement terminates after the first rendezvous and the second call
to that task finds no task to rendezvous with. To avoid this error,
multiple accept statements, or looping on the accept statement, can
be used.

A handler for the Tasking_Error exception can also be added to the task
body, e.g:

 task body Process_Data is
begin

See_If_Data.Data_Check;
 exception

when Tasking_Error => Dont_Panic;
 end Process_Data;

where Dont_Panic is a procedure to handle the exception.

Exception propagation during rendezvous can be complex (consult the
LRM for full details). For example, if a rendezvous was in progress, and
an exception is unhandled by the calling task, then propagation is to a
point immediately after the accept statement in the called task.

As a task entry point can be called several times, and the called task
cannot accept all calls at once, a FIFO queue of calls for each task entry
is maintained. The calling task with a call in the entry queue is
suspended until the rendezvous is completed. So that an acceptor task
can determine the number of queued entry calls, a Count attribute is
available e.g. Task_Name'Count returns an integer call count.

RDCS 423 - Real-time Distributed Computer Systems rl1/p8

Interfacing tasks with data transfer:

Where data transfer between tasks is involved, the structure of the
entry and accept statements is the same as before, only now the
optional parameter definitions are used. The following example also
illustrates multiple entry and accept statements:

 task Service_Station is -- task specification
 entry Pumps (Car : Car_Id);
 entry Garage (Car : Car_Id);
 end Service_Station;

 task body Service_Station is
begin

loop
accept Pumps (Car : Car_ID) do

Fill_With_Petrol (Car);
 end Pumps;
 accept Garage (Car : Car_ID) do
 Service_Car (Car);
 end Garage;
 end loop;
 end Service_Station;

Where a typical task call for the above tasks would be:

 Service_Station.Pumps (Car_ 123);
 Service_Station.Garage (Car_678);

In the previous Service_Station task example, the task is suspended
waiting on the first accept whereas we would prefer it to accept either
accept as they become active through an entry call - this is achieved
with the select statement.

RDCS 423 - Real-time Distributed Computer Systems rl1/p9

Selective wait:

The basic selective wait has the following form:

 select
accept statement

 or
accept statement

•
 •
 or
 accept statement
 end select;

where the task waits for any task entry before continuing execution. For
multiple simultaneous entries the entry selected is not specified (but one
entry is selected by the run-time environment).

A when clause can also be added before the accept statement which
acts as a guard on the accept. Consider the previous example with a
selective wait and a guard (the boolean Petrol_Available):

 •
 • (as before)
 •
 loop

select
when Petrol_Available =>

 accept Pumps (Car: Car_Id) do
Fill_With_Petrol (Car);

 end Pumps;
 or
 accept Garage (Car: Car_Id) do

Service_Car (Car);
 end Garage;
 end select;
 end loop;

RDCS 423 - Real-time Distributed Computer Systems rl1/p10

Caution is required where all possible alternatives in a select statement are
guarded, as if after evaluating all guards no open accept statement is
found, the predefined exception Program_Error is raised. To avoid this
situation an else clause can be used in the select statement, e.g:

 •
 •
 select

when • • •
accept • • •

•
 •
 or

•
 •
 else

Sleep;
 end select;

The else clause executes if all accepts are guarded and all their
associated task entries have not been called - i.e. no task entry is waited
on. As an intermediate alternative, a delay statement can be used to
provide a timed waiting period, e.g:

 select

accept • • •
or

accept • • •
or

delay 1_000.0; -- wait for 1,000 seconds before sleeping
 Sleep;
 end select;

In place of a delay statement, a terminate statement can also be
used to terminate the task - this can only occur when there are no calls in
the task entry queues waiting to be accepted. This statement can be
contrasted with the abort statement which causes immediate task
shutdown.

RDCS 423 - Real-time Distributed Computer Systems rl1/p11

The abort statement has the following form:

 abort task name list;

which not only aborts tasks specified in the list but also aborts all
dependent tasks and active subprograms as well.

There are restrictions placed on the use of the select statement
alternatives: else, delay and terminate. No more than one of
these alternatives can be contained in a single select statement.

Conditional entry calls and timed entry calls:

The select statement can also be used in the calling task. Firstly in a
conditional entry call an else clause is used, e.g:

 select
 Service_Station.Pumps (Car_123);
 else
 Try_Another_ Service_Station;
 end select;

which allows an alternative procedure to be activated if the call is not
accepted immediately.

The timed entry call allows a delay statement to be executed if the call
is not immediately accepted by the called task, e.g:

 select
 Service_Station.Pumps (Car_123);
 or

delay 60.0; -- wait 60 seconds
 Try_Another_ Service_Station;
 end select;

In the above, if the rendezvous occurs before the delay of 60 seconds
expires, then the procedure Try_Another_ Service_Station is not
executed and the select statement is exited.

RDCS 423 - Real-time Distributed Computer Systems rl1/p12

Asynchronous Select Statements:

Ada95 supports another form of selective entry call which uses a then
abort clause. This causes a task in a selective wait to exit the wait
when an alternative action becomes feasible. Consider a simple ATM
example:

 begin
 Read_Card (Card_data);
 select -- asynchronous select
 Keyboard.Cancel_Pressed; -- user may cancel

 raise Transaction_Cancelled;
 then abort
 Validate_Card (Card_Data); -- query message on card
 end select;
 Perform_Transaction (Card_Data);
 exception
 when Transaction_Cancelled =>
 Display_Cancellation_Notice;
 Return_card;
 end;

Task attributes:

Since a task can have four states: running, completed, terminated or
abnormal, there are two attributes provided that can be used to monitor
the state of a task:

• Task_Name'Terminate returns True if Task_Name has terminated and
False otherwise

• Task_Name 'Callable returns True if Task_Name is running and False
otherwise

The abnormal state is only caused by an abort and is not otherwise
distinguished from the terminated state.

RDCS 423 - Real-time Distributed Computer Systems rl1/p13

Entry Families:

It is possible to use one-dimensional arrays as entry point families for
conciseness, e.g:

 task Multiple_Entries is
entry Point (1..5) (On: in Boolean);

 entry Emergency (Boolean);
 end Multiple_Entries;

and the task body could have the following accept statements:

 accept Point (3) (On: in Boolean); -- 3rd member of family
 accept Emergency (True); -- 2nd member of family

and other tasks can call these entries with:

 Multiple_Entries.Point (3) (On => True);
 Multiple_Entries.Emergency (True);

Note the difference between the entry family index, which appears first,
and the entry parameters which follow.

Task priorities:

A compiler pragma is provided to assign task priorities in the task
specification, i.e. the compiler prioritizes tasks according to the priority
level, e.g:
 pragma Priority (priority level);

where the range of priority level is defined by the compiler.

Task types:

All the tasks defined so far have belonged to anonymous task types, but
these can be defined explicitly, e.g:

 task type Resource is -- task type declaration
 entry Seize;
 entry Release;
 end Resource;

RDCS 423 - Real-time Distributed Computer Systems rl1/p14

Once a task type is declared then objects can be declared to belong to
that type, e.g:

 Laser_Printer, Ink_Jet_Printer : Resource;

which declares two tasks having the same entries (hence the use of dot
notation for calling tasks) and performing the same processing. Task
types are limited private types so task objects cannot be compared to
each other, although they can be used as subprogram parameters.

Task interference:

This can occur where two or more tasks concurrently use the same
resource, and a possible solution is to make use of the Resource task
type defined above. Tasks obtain control of a resource by calling the
task entry Seize and release it by calling the task entry Release.

As an example the following is taken from the Ada LRM:

 package Resource_Handler is
 •
 • -- task type Resource declaration

end Resource_Handler;
 package body Resource_Handler is

task body Resource is
In_Use : Boolean := False;

 begin
loop

select
when not In_Use =>

 accept Seize do
In_Use := True;

 end Seize;
 or

accept Release do
 In_Use := False;
 end Release;
 or
 terminate;

end select;
 end loop;

end Resource;
 end Resource_Handler;

RDCS 423 - Real-time Distributed Computer Systems rl1/p15

To use the Resource_Handler package it is made visible to the unit using
it, e.g:

with Text_IO, Resource_Handler;
use Text_IO, Resource_Handler;
procedure Print is
 Screen : Resource;
 task type Message_Type
 Copy_1, Copy_2 : Message_Type;
 task body Message_Type
 is separate;
begin

null;
end Print;

separate (Print)
task body Message_Type is
begin

Screen.Seize;
 Put ("message text");
 New_Line;
 Screen.Release;
end Message_Type;

In this example, as soon as elaboration is complete and execution begins
(after the begin keyword), the three tasks Screen, Copy_1 and Copy_2
are activated.

Dynamically created tasks:

All the examples examined so far have static task creation, i.e. tasks are
created at the start of execution after elaboration. However, dynamically
created tasks can be brought into existence using access types - the same
way dynamically created objects are created, e.g:

 •
 • procedure Print as previously
 •
 type Screen_Task is access Resource;
 Screen : Screen_Task := new Resource;
 •
 • procedure Print as previously
 •

In this example, the task Screen is activated when it is created with the
allocator new. The tasks Copy_1 and Copy_2 are activated as before
after elaboration of the Print procedure.

RDCS 423 - Real-time Distributed Computer Systems rl1/p16

Real-Time Extensions

• Time management: Ada 83 provided a Calendar package to
represent time points (Calendar.Time) and intervals
(Standard.Duration). In Ada 95, a Monotonic package is provided
to give a guaranteed non-decreasing clock, and a delay until
keyword is added to provide precise periodic execution.

• Task scheduling: In Ada 95, task priorities can be varied
dynamically, alternative scheduling policies can be implemented,
control over selection priorities for alternatives in selective waits,
entries from entry queues, and interrupt handling tasks, is provided.
A universal type for the task class, System.Task_Class can be used
as an access type for a task, e.g:

with Dynamic_Priority_Support.Implementation_Extensions;
package body Mode_Change_Management is

use Dynamic_Priority_Support.Implementation_Extensions;
Num_Managed: constant:= Number_Of_Tasks;
Tasks_Being_Managed: Task_List(1..Num_Managed):=

 (T1'Access, T2'Access, T3'Access,...);
.

Priority_In_Mode: array (System_Mode) of
 Priority_List(1..Num_Managed):=

 (Normal => (T1_Norm, T2_Norm, ...),
 Mode2 => (T1_Mode2, T2_Mode2, ...),
 Mode3 => ...);

task body Manager_Task is
 Manager_Mode : System_Mode := Normal;
 New_Mode : System_Mode;

begin
loop

 Mode_Manager.Wait_For_Mode_Change
 (Manager_Mode, New_Mode);
 Set_Priority(Tasks_Being_Managed,
 Priority_In_Mode(New_Mode));
 Manager_Mode: = New_Mode;

end loop;
end Manager_Task;

end Mode_Change_Management;

RDCS 423 - Real-time Distributed Computer Systems rl1/p17

• Interrupts: Ada 95 provides an Interrupt_Management package
which provides for:

 - an Interrupt_ID type to identify interrupts

- a sub-package Interrupt_Names with implementation
dependent constants

 - operations for dynamically attaching and detaching
 interrupts

Distributed Processing Extensions

The primary addition to Ada 95 to support the distribution of software
modules is the partition. The mapping of partitions to physical nodes is
determined by a user provided configuration in a virtual nodes approach.

The same result can be indirectly achieved with separate programs in Ada
83, but in Ada 95 the software for all nodes is one logical program so the
strong type-checking applies across partition boundaries.

Communication between partitions is achieved via a
Remote_Call_Interface package or (if shared memory is supported)
through variables declared in a Shared_Passive package.

Ada 95 specifies a standard interface to the communications subsystem
which is user or third-party supplied (e.g. RPC or REC).

As an example, consider a distributed database application, where the
clients have their own address spaces, and there is some globally shared
memory for holding messages between the clients and the database server.

The example also illustrates the use of the Pure pragma which allows the
package in which it is used to be shared by all active partitions. First,
define the types to be used in inter-partition communication:

RDCS 423 - Real-time Distributed Computer Systems rl1/p18

package Comm_Types is
pragma Pure;
type File_Mode is (In_Db, Out_Db, Inout_Db);
type Byte is range 0..255;
Record_Size: constant:= 4096;
type Byte_Index is range 0..Record_Size-1;
type Record_Key is String (1..32);
type Record_Buffer_Type is array (Byte_Index) of Byte;
pragma Pack (Record_Buffer_Type);
type System_Time is range 0..2**31-1;

end Comm_Types;

Now the interface to the passive partition is defined corresponding to the
global shared buffer 'pool':

with Comm_Types;
package Global_Memory is

pragma Shared_Passive;
Global_Timer: atomic Comm_Types.System_Time;
Num_Buffers: constant := 100;
type Buffer_Index is range 0..Num_Buffer: = 0;
Null_Buffer_Index: constant Buffer_Index: = 0;
Buffer_Array: array(Buffer_Index range 1..Num_Buffers) of

Comm_Types.Record_Buffer_Type;
type Index_Array is array (Buffer_Index range

1..Num_Buffers) of Buffer_Index; -- free list array
protected Buffer_Pool_Manager is

procedure Get_Buffer (Buffer: out Buffer_Index);
procedure Release_Buffer (Buffer: in out Buffer_Index);

private record
 Last_Used_Buffer: Buffer_Index: = 0;

 First_Free_Buffer: Buffer_Index: = 0;
 Next_Free_Buffer: Index_Array;

end Buffer_Pool_Manager;
end Global_Memory;

The Shared_Passive pragma is used to place the package in a shared
passive partition accessible to all active partitions. The protected record
is used to synchronize access to the list of free buffers.

