
RDCS 423 - Real-time Distributed Computer Systems pn/p1

PETRI NET MODELLING

Petri nets are a form of computational model for designing and
modelling systems, and are particularly useful where concurrent
processing and dynamic sequential dependencies exist. Petri nets are
applied through modelling the system as an abstract machine that
embodies all the salient features of the system under study.

The most common approach using Petri nets is to use conventional
design techniques to specify a system, then model it as a Petri net. The
Petri net is analyzed and any problems encountered in the net suggest
flaws in the original design, which is then modified, and the process
iterates:

A more radical approach is to perform the entire design and
specification process in terms of Petri nets (PNs). This approach
requires an additional transformation of the PN model into a working
system.

The major characteristics of PNs that make them suitable for systems
modelling can be itemised:

• PNs support an explicit representation of causal dependencies and
independencies.

• PNs support system description at various levels of abstraction.
• PNs represent system properties using the same methods as the

system itself, e.g. explicit concurrency.
• Correctness proof systems use the same methods as system model

construction.

Analyse

System
Petri net
Model

Modelling

System
Properties

Revise
Design

RDCS 423 - Real-time Distributed Computer Systems pn/p2

Definition

A Petri net structure is a four-tuple C = (P, T, I, O) where:

• P = {p1, p2, . . . , pn} is a finite set of places
• T = {t1, t2, . . . , tm} is a finite set of transitions
• I : T → P∞ is an input function
• O : T → P∞ is an output function

A place pi is an input place of transition tj if pi ∈ I(tj)
A place pi is an output place of transition tj if pi ∈ O(tj)
The multiplicity of input and output places can be defined as #(pi, I(tj))
and #(pi, O(tj)) respectively.

Example: C = (P, T , I, O), P ={p1, p2, p3, p4, p5}, T ={t1, t2, t3, t4, t5}

 I(t1) ={p1}, O(t1) ={p2, p3, p5}
 I(t2) ={p2, p3, p5}, O(t2) ={p5}
 I(t3) ={p3}, O(t3) ={p4}
 I(t4) ={p4}, O(t4) ={p2, p3}

Definition

A Petri net graph G = (V, A) , is a bipartite directed multi-graph
where:

• V = {v1, v2, . . . , vs} is a set of vertices
• A = {v1, v2, . . . , vs} is a multiset (or bag) of directed arcs.
• The set V can be partitioned into two disjoint sets P and T

where P and T are defined in the Petri net structure, and
V = P ∪ T and P ∩ T = ∅ .

• Each directed arc ai ∈ A has vertices, i.e. ai = (vj, vk) and
vj ∈ P, vk ∈ T or vj ∈ T, vk ∈ P.

• The graphical notation assigns circles centred on vertices
 vj ∈ P (or places), and bars centred on vertices vk ∈ T (or

transitions).

RDCS 423 - Real-time Distributed Computer Systems pn/p3

Example: the previous example PN structure can also be represented
graphically as:

As a notational convenience, where we have a high multiplicity of arcs
on the PN graph, then they can be bundled, e.g:

Definition

A marking µ of a Petri net C = (P, T, I, O) is a function from the set of
places P to the non-negative integers N, i.e. µ : P → N. The PN
marking can also be defined as an n-vector, µ = (µ1, µ2, . . . , µn) where
n = |P|, and it can be interpreted as a number of tokens µi in each place
pi for i = 1, . . . , n.

A marked Petri net M = (C, µ) is a Petri net structure C with marking µ.
On the graphical representation, tokens are denoted by "•" which are
confined to places. As the number of tokens in any place is
(theoretically) unbounded, there is an infinite set of possible markings
for a PN.

For notational convenience, when the number of tokens becomes too
large to represent with • 's, a number is used within the place.

 t 2

 p 1

p 2

 p 3

p4

 p 5

 t 1
 t4

t 3

 p 1 p 2
 t 1

 7 11

RDCS 423 - Real-time Distributed Computer Systems pn/p4

Example

 µ = (1, 2, 0, 0, 1)

Execution Rules for Petri nets

The execution of a PN is controlled by the number and distribution of
tokens in the PN. A PN executes by firing transitions which fire by
removing tokens from their input places and creating new tokens to be
distributed to their output places.

Transitions can only fire if enabled by having at least as many tokens
in their input places as the number of arcs from the input places. These
tokens are referred to as enabling tokens, and multiple tokens are
required for multiple input arcs.

A transition tj ∈ T is enabled for all pi ∈ P where:
 µ(pi) ≥ #(pi, I(tj))

and it may fire when enabled to produce a new marking µ' which is
defined by:
 µ'(pi) = µ(pi) - #(pi, I(tj)) + #(pi, O(tj))

Transitions can continue to fire as long as at least one is enabled,
otherwise execution halts.

 t 2

 p 1

 p 2

 p 3

 p 4

 p 5

 t 1
 t 4

 t 3

RDCS 423 - Real-time Distributed Computer Systems pn/p5

Examples

Enabled transitions: t1, t3, t4

Fire transition t4, enabled transitions: t1, t3

Petri Net State Spaces

The state space of a PN with n places is the set of all markings, i.e. Nn.
A next-state function can be defined, denoted by δ, which gives the
change in markings after a transition fires. Thus if a transition tj is
enabled, then δ(µ, tj) = µ1.

Given an initial marking µo, firing an enabled transition tj produces a
new marking µ1 = δ(µo, tj). From this marking, another enabled
transition tk can fire to produce a new marking µ2 = δ(µ1, tk), and so on.
Thus the execution of a PN can be defined by a sequence of markings
(µo, µ1, . . .) and a sequence of transitions (tjo, tj1, . . .) which are
connected through the relationship:

 δ(µk, tjk) = µk+1, for k = 0, 1, 2, . . .

 t
2

 p
1

 p
2

 p
3

 p
4

 p
5

 t
1 t

4

 t
3

 t
2

 p
1

 p
2

 p
3

 p
4

 p
5

 t
1 t

4

t
3

RDCS 423 - Real-time Distributed Computer Systems pn/p6

For a Petri net C = (P, T, I, O) with marking µ, a new marking µ' is said
to be immediately reachable from µ if there exists a transition
tj ∈ T such that δ(µ, tj) = µ'.

If a marking µ' is immediately reachable from some marking µ and a
marking µ'' is immediately reachable from the marking µ', then µ'' is
reachable from µ.

A reachability set R(C, µ) for a PN C = (P, T, I, O) can be defined as the
smallest set of markings for which if µ ∈ R(C, µ) and µ' ∈ R(C, µ), where
µ'' = δ(µ', tj) for some tj ∈ T, then µ'' ∈ R(C, µ).

Example

µ = (1,0,0), immediately reachable markings are (0,1,0) and (1,0,1), and
then (0,1,1) and (1,0,2) and so on.
Thus R(C, µ) = {(1,0,n}, (0,1,n) | n ≥ 0}.

An extended next-state function can be defined to map a marking and a
sequence of transitions into a new marking. Given a sequence of
transitions tj1, tj2, . . . , tjk and a marking µ, a new marking
µ' = δ*(µ, tj1, tj2, . . . , tjk) results from the firing of the sequence of
transitions.

Alternative Basic Petri Net Forms

A PN can also be represented as:
• a 4-tuple C = (P, T, F, B) where F and B are functions mapping

places and transitions into the number of tokens needed for input (F)
or produced for output (B)

• a triple C = (P, T, A) where A is a set of arcs
• C = TP where TP is a structure of appropriate pairs of places given

linking between them through arcs and transitions.

 t
2

p
3

p
1

 t
1

p
2

RDCS 423 - Real-time Distributed Computer Systems pn/p7

Modelling with Petri Nets

There are two primitive concepts in the Petri net view of a system's
behaviour: events and conditions. Events are system actions which are
controlled by the state of the system, and the system state can be
described by a set of conditions.

For events to occur certain conditions must hold, i.e. preconditions.
On event occurrence, the preconditions may cease to hold and other
conditions, i.e. postconditions become true.

Example

Consider a simple machine shop modelling problem, in which a machine
waits until an order appears, then machines the ordered part and sends it
out for delivery.

The conditions for the system are:

a. Machine shop is waiting
b. Order has arrived and is waiting
c. Machine shop is processing order
d. Order is complete

and the events are:

1. Order arrives
2. Machine shop starts on order
3. Machine shop finishes the order
4. Order is sent for delivery

Represented as a event/condition table:

Event Preconditions Postconditions
1 - b
2 a, b c
3 c d, a
4 d -

RDCS 423 - Real-time Distributed Computer Systems pn/p8

To map this to a PN it is only necessary to recall that conditions are
modelled by places and events are modelled by transitions.

Preconditions are inputs to transitions and postconditions are outputs
from transitions:

Tokens are used to represent the holding of a condition at initialisation.

The PN model allows non-interacting enabled events to occur
independently without synchronization, i.e. PNs are asynchronous by
nature - there is no inherent measure or flow of time built in. Time is
indirectly represented as a partial ordering of the occurrence of a
sequence of events which can take varying amounts of 'real' time.

Concurrency in PNs is simply modelled as
independent nondeterministic and non-simultaneous
firing of transitions:

Conflict in PNs is modelled by coupling transitions
through common places (hence sharing common
preconditions):

PNs also execute nondeterministically, i.e. the
selection of which transition to fire when several are
enabled is made randomly. In the basic PN model,
transition firings are considered to be instantaneous and event
occurrences cannot be simultaneous (since time is a continuous real
variable). Conventional PN events are taken to be primitive - i.e.
instantaneous and non-simultaneous.

 1

b c d

 a

 2 3 4
order being processed order complete

machine waits

order
i i

RDCS 423 - Real-time Distributed Computer Systems pn/p9

Non-primitive events can take non-zero-time and thus may overlap other
events - but they can be decomposed into primitive events, e.g:

The same non-zero width transition bar is useful for abstracting multi-
level PNs in a hierarchical structure.

Although PNs are inherently
asynchronous they can be used to
model synchronisation type
problems, e.g mutual exclusion
mechanisms, where only one process
can access a shared data object at a
time:

PNs can also be applied to other
'classical' synchronisation problems,
such as the producer/consumer
problem, the dining philosopher's
problem, the reader/writer problem,
and P/V operations on semaphores.

PNs have also been applied to a wide variety of non-computational
modelling applications, e.g. planning and scheduling on large projects,
chemical reaction systems, communication networks, brain models, the
rules of propositional calculus, and legal systems.

See J.L. Petersen, "Petri net theory and the Modelling of Systems", 1981,
Prentice-Hall, for more examples.

non-primitive
event occurs non-primitive

event starts
non-primitive
event stops

≡

Critical
Section

Process 1 Process 2

RDCS 423 - Real-time Distributed Computer Systems pn/p10

PETRI NET ANALYSIS

Given a Petri net (PN) model of a system it should be possible to analyse
it to lead to useful insights into the behaviour of the system. Thus it is
useful to consider what types of problems can be solved with PNs and the
important properties that can be used to classify PN behaviour.

Safeness

A place in a PN is safe if the number of tokens in that place cannot
exceed one. A PN is safe if all places in the PN are safe, i.e. a place pi
∈ P, for a PN C = (P, T, I, O) with a initial marking µ, is safe if:

 ∀ µ' ∈ R(C,µ), µ'(pi) ≤ 1

 This PN is not safe This PN has been made safe

Boundedness

Safeness is a special case of a more general boundedness property: a
place is k-safe or k-bounded if the number of tokens cannot exceed k at
that place, i.e: a place pi ∈ P, for a PN C = (P, T, I, O) with a initial
marking µ, is k-safe if:

 ∀ µ' ∈ R(C,µ), µ'(pi) ≤ k

If every place is at worst k-safe then the PN can be described as k-safe,
and a PN is bounded if all places are bounded.

RDCS 423 - Real-time Distributed Computer Systems pn/p11

Conservation

For PNs that model resource allocation systems, conservation of tokens
(hence resources) is an important property. A PN C = (P, T, I, O) with
initial marking a µ, is strictly conservative if:

 ∀ µ' ∈ R(C,µ),
pi ∈
∑

P
µ'(pi) =

pi ∈
∑

P
µ(pi)

For this strongly constraining relationship to hold, it should be clear that
the number of inputs to each transition must equal the number of
outputs, i.e. |I(tj)| = |O(tj)|.

Consider the examples:

A non-strictly conservative PN An equivalent strictly conservative PN

In general, there may not be a simple one-to-one mapping between
tokens and resources as some tokens may represent several resources.
To generalize the conservation concept, a weighed sum of all reachable
markings should be constant, i.e. a weighting factor wi can be applied to
each place and we then have:

i
∑ wi µ'(pi) =

i
∑ wi µ'(pi)

RDCS 423 - Real-time Distributed Computer Systems pn/p12

Liveness

Another problem that may arise in
resource allocation is deadlock - for
example, where a process A has
resource Q and a process B has a
resource R and wants resource Q →
neither process can proceed. This
situation can be modelled by a PN:

Where in the above p4 represents
resource Q and p5 represents resource
R. We can see that transition firings in
the sequence t1t2t3t4t5t6 or t4t5t6t1t2t3 do
not result in deadlock, but any sequence
starting with t1t4 or t4t1 results in
deadlock.

 Process A Process B

In a PN, a transition is live if it is not deadlocked, i.e. if it can be
enabled. Thus a transition tj of a PN, C is potentially fireable in a
marking µ if ∃ µ' ∈ R(C,µ) and tj is enabled in µ'.

A level of liveness can also be specified for each transition in a PN, from
level 0 (dead) to level 4 (live for all markings) and intermediate levels
specify liveness for an increasing number of possible firing sequences.

Reachability and Coverability

Given a PN C with marking µ and a marking µ' the following question
can be posed: Is µ' ∈ R(C,µ)? This can be an important question, for
example in the earlier example if a marking µ = (0,1,0,0,0,0,1,0) is
reachable, then deadlock can occur.

 p 1

 p 2

 p 3

 p 6

 p 4

 p 5

 p 7

 p 8

 t 1

 t 2

 t 3

 t 4

 t 5

 t 6

Q

R

RDCS 423 - Real-time Distributed Computer Systems pn/p13

A closely related PN analysis problem is coverability and it can be
stated as: Given a PN C with initial marking µ and a marking µ', is there
a reachable marking µ'' ∈ R(C,µ) such that µ'' ≥ µ' (i.e. is the marking µ'
covered by some other marking µ'').

Interest in reachability or coverability can be confined to a few key
places (say representing resources) so a submarking reachability or
submarking coverability modulo a set of places can be defined.

Firing Sequences

Another analysis approach is to concentrate on sequences of transition
firings, as distinct from state changes. This approach is more useful to
resolve questions of liveness, for example, in the earlier deadlock PN
example, firing sequences t1t4 or t4t1 result in deadlock. This analysis
question has a direct connection with the languages associated with PNs.

The Reachability Tree

Consider the following PN which has initial marking (1,0,0) and two
reachable markings resulting from firing the two enabled transitions:

The reachability tree represents all possible transition firing sequences,
and it is easy to see that a PN with infinite reachability set will have a
infinite reachability tree.

(1,0,0)
t 2

 t 1
(1,1,0)

 t 2 t 1

(0,1,1)
 t 3

(0,0,1) (1,2,0)
 t 2

 t 1
(0,1,1)

t 3

(0,0,1) (1,3,0) (0,3,1) p 1

 p 2

 p 3

 t 1

 t 2

 t 3

RDCS 423 - Real-time Distributed Computer Systems pn/p14

For analysis purposes, it is useful to limit the tree to a finite size, i.e. the
marking pattern that is repeated can be extracted and an arbitrarily large
number of tokens represented with the symbol 'w'.

Example

For the 3 place/3 transition PN below, a finite reachability tree can be
constructed:

The reachability tree can now be used an analysis tool for some of the PN
properties that have been defined earlier.

(1,0,0)
 t 2 t 1

(1,w,0)
 t 2 t 1

(0,1,1)
 t 3

(0,0,1) (1,w,0) (0,w,1)
 t 3

(0,w,1)
p 1

 p 2

p 3

t 1

 t 2

t 3

