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AXIOMATIC FORMAL METHODS IN 
REAL-TIME SYSTEM DESIGN 
 
Axiomatic proof systems - aim is to improve the conciseness 
and precision of software design. 
 
For general purpose software there are several formal 
specification languages, e.g. Z and VDM.  These proof 
systems do not deal explicitly with timing properties -> 
difficult to use for real-time performance verification. 
 
There are significant limitations on the axiomatic method, 
even without considering time constraints: 
 

• Time dependent properties in concurrent systems are 
difficult to specify (e.g. mutual exclusion & concurrency) 

 

• Determining invariants in complex systems is difficult 
 

• Complex expression simplification is tedious (and error-
prone) 

 
Four axiomatic approaches can be mentioned: 
 
• Dijkstra's weakest precondition -  definitions can be used 

to derive a latest-time to begin a computation 
 

• Real-Time Logic - can be used to specify and infer 
temporal properties 

 

• Time-related history variables - can be used to reason 
about temporal properties 

 

• Extended state machines and Real-Time Temporal 
Logic - combined automata model and axiomatic temporal 

    constraint specification 
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REAL-TIME LOGIC (RTL) 
 
First proposed by Jahanian & Mok [1986], the RTL computational 
model is made up of: 
 

• events 
• actions 
• causality relations 
• timing constraints 
 

and formally constructed with first-order predicate logic. 
 
An event occurrence function is defined for an event e at the 
ith occurrence as (e, i) and the time of occurrence is @(e, i). 
 
There are three types of constant in RTL: 
 

• action constants - primitive or composite, where a 
composite constant has a precedence imposed by the 
causality relations between actions.  

 

• event constants - 3 subtypes: 
 - start/stop events for action initiation/termination 
 - transition events for changes in state behaviour 
 - external events which affect system behaviour but are not 
      system caused 
 

• integers - time values or event numbers 
 
RTL axioms are derived from the event-action model of the 
system by characterizing: 
 

• Relations between actions and their start/stop events 
• Sporadic and periodic event constraints 
• Causal relations which may generate a transition event 
• Additional constraints to prevent action occurrence 
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RTL Example 1 
 
Consider the following specification: 
 
A panel with a button that when pushed must generate an action 
SAMPLE which must execute within 30 seconds. The computation time 
of this SAMPLE action is at least 20 seconds. 
 
We can illustrate this with a timing diagram (as shown below) 
and specify this example with three RTL axioms: 

 

               

∀ ≤ ↑

∧ ↓ ≤

∀ ↑ ≤ ↓

x x x
x x

y y y

:  @  ( BUTTON1,  )    @  ( SAMPLE,  )
 @  ( SAMPLE,  )    @  ( BUTTON1,  ) +  30

:  @  ( SAMPLE,  ) +  20    @  ( SAMPLE,  )

Ω

Ω  

 

where x and y are integer event counters, and the axioms are true for 
all values of x and y. 
 
Interpretation:  
• 1st axiom - the time of BUTTON1 depression must be less than or 

equal to the start time of action SAMPLE. 
• 2nd axiom - the end time of action SAMPLE must be less than or 

equal to the time of BUTTON1 depression plus 30 seconds. 
• 3rd axiom - the end time of action SAMPLE must be equal to or 

exceed the start time of action SAMPLE by 20 seconds. 
 

RTL Constraint Graphs 
 
Each RTL axiom can be reduced to a constraint and a 
transformed occurrence function. 

BUTTON1Ω

30 secs

20 secs

SAMPLE SAMPLE
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The transformed RTL axioms are constructs in Presburger 
arithmetic which consists of inequality predicates, the addition 
and subtraction operator, first-order logic connectives and 
uninterpreted integer functions.  Each occurrence function 
@(e, i) is transformed to an uninterpreted function fe(i). For 
the above example, the uninterpreted function formulas are: 
 

  
∀ ≤ ∧ ≤
∀ ≤

x f x f x f x f x
y f y f y
:  ( )    ( )  ( )    ( ) +  30
: ( ) +  20    ( )

1 2 3 1

2 3
 

 
The conversion of RTL axioms to uninterpreted function 
expressions follows the same procedure as the conversion of 
Well-formed formulas (Wff) in Predicate Calculus to Clausal 
form.  
 
The set of transformed RTL axioms (F) converted to 
Presburger arithmetic formulas (F') can be put in conjunctive 
normal form CNF (F"). The general form of a formula in  
CNF is: 
 
 F C C Cn" = ∧ ∧ ∧1 2 �  
 

where each Ci  is a disjunctive clause of the form: 
 
 C L L Li m= ∨ ∨ ∨1 2 �  
 
and each Lj is a literal of the form: 
 
 L v I vi i i i: 1 2± ≤  
 

where each vi1 and vi2 are uninterpreted integer functions and 
Ii is an integer constant. Each literal is represented as two 
nodes joined by an arc on the RTL constraint graph: 
 

   vi1 vi2
Ii+-
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For the example, the following RTL constraint graph can be 
drawn: 
 

  

-30

0
20

f   (x)1 f   (x)2
f   (y)2

f   (x)3
f   (y)3  

 

RTL constraint graph node reduction 
 
Take the above example with the variable substitution, 
Ψ = {y → x} which by inspection allows the reduced graph 
below to be constructed. Just for illustration purposes we 
generalize the time constraints also (to t1, t2 & t3): 
 

  
t1 t2

t3

f   (x)1 f   (x)2 f   (x)3  
 
The application of node reduction techniques to each arc of 
the graph is mapped to the deductive resolution of the 
corresponding RTL axioms, e.g: 
 

 
{ ( ) ( )} { ( ) ( )} { ( ) ( )}

( ) ( )
f x t f x f x t f x f x t f x

f x t t t f x
t t t

1 1 2 2 2 3 3 3 1

1 1 2 3 1

1 2 3 0

+ ≤ ∧ + ≤ ∧ + ≤
⇒ + + + ≤
⇒ + + ≤

 

 
i.e. the sum of these time constraints must be less than or 
equal to zero otherwise the inequality fails → RTL axioms are 
not consistent → timing specification cannot be met. 
 
Thus, any positive cycle in the reduced RTL constraint graph 
implies that the timing specification for the system cannot be 
met. 
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Returning to the example, after node reduction we have a 
single negative cycle which implies that the timing 
specification can be met:  

     

-10

f  (x)1  
 
If we change the specification: 
Action SAMPLE must now be executed within 15 time units of 
the button being pressed  
→  a positive cycle which implies that the specification cannot 
be now be met. 
 
 

Testing a timing property against the system specification 
 
This can be generalized by applying any timing property or 
safety assertion (which is just a set of RTL axioms {P}) and 
check it for consistency against the system specification {S}. 
 
We can conjoin the negation of the timing property {P} with 
the system specification {S}: 
 

 ¬{P} ∧  {S}  →  unsatisfiable 
 
which must be false or unsatisfiable (i.e. have at least one 
positive cycle) for the timing property to be consistent with 
the system specification. In a purely analogous form, 
graphically we have: 
 

  

{P}

{S}

{P} {P}

{S}

{P}{P}

  {S}

   unsatisfiable  ->  consistent                 satisfiable  ->  inconsistent

{P} {P}
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i.e. if the timing property {P} contains (and hence does not 
contradict any axiom in) the system specification {S}, then 
there is no occurrence function created, i.e. it is unsatisfiable. 
→ the timing property is consistent with the system 
specification. But if the timing property {P} effectively 
removes or invalidates any axiom from the system spec {S}, 
→ some occurrence function is created, i.e. it is not consistent 
with the system specification. 
 
RTL Example 2 
 
A safety assertion is added to Example 1: 
 
If the transmitted information is displayed within 10 time units of the 
completion of action SAMPLE, then within 40 time units of pressing 
button 1, the requested information will be displayed.  
 
In RTL notation the safety assertion or property {P} is: 
 

         

∀ ∀ ↓ ≤

∧ ≤ ↓
→ <
∧ ≤

u t u t
t u

u t
t u

:  @  ( SAMPLE,  )    @  ( DISPLAY,  )
 @  ( DISPLAY,  )    @  ( SAMPLE,  ) +  10
 @  ( BUTTON ,  )    @  ( DISPLAY,  )

 @  ( DISPLAY,  )    @  ( BUTTON ,  ) +  40

Ω

Ω
Ω Ω

Ω Ω
1

1

  

 
The negated form of the safety assertion (¬{P}) is given by: 
 

           

∃ ∃ ↓ ≤
∧ ≤ ↓
∧ ≤

∨ ≤

u t u t
t u

t u
u t

: @  ( SAMPLE, )    @  ( DISPLAY, )
 @  ( DISPLAY, )    @  ( SAMPLE, ) +  10
 { @  ( DISPLAY, )    @  ( BUTTON , )

 @  ( BUTTON , ) +  41 @  ( DISPLAY, )}

Ω
Ω

Ω Ω
Ω Ω

1
1

  

 
We note that since the time constants are integers, in the negation of 
the last inequality above, the following relation is being utilized: 
 

 ¬{@(E1, i)  ≤  @(E2, j)}  =  @(E2, j) + 1  ≤  @(E1, i)  
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We can also observe that the universal quantifies are replaced by 
existential quantifiers in the negated form and the logical conjunction 
is converted to a disjunction. The RTL axioms are transformed to 
formulas in Presburger arithmetic with uninterpreted integer functions: 
 

               
f f f f
f f f f
3 4 4 3

4 1 1 4

( )    ( ) )    ( ) +  10
( )    ( )  ( ) +  41    ( )
U T (T U
T U U T

≤ ∧ ≤
≤ ∨ ≤

 

 

The existentially quantified variables u and t are converted to Skolem 
constants U and T (i.e. instances of the variables that satisfy the 
quantifier).  
 
The RTL constraint graph can then be produced for this example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nodes are eliminated one-by-one, by making substitutions for 
variables. All cycles that can be generated through eliminated nodes 
must be included on the reduced graph, e.g: 
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Note that disjunctive literals must appear in different cycles to 
influence the satisfiability and we must have at least one positive cycle 
in all disjunctive possibilities to make the conjoined system satisfiable. 
 
Thus in this example the safety assertion produces an unsatisfiable ¬
{P} ∧  {S}  ->  the safety assertion is consistent with the system 
specification. 
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