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TEMPORAL OBJECT RELATIONS 
 
The two common time entities of time points and time intervals can be 
used to permit formal reasoning about time and temporal relationships. 
 
Definition:  time point - a real number that represents the occurrence time 
of an instantaneous event and is an indivisible entity.  Defined with 
respect to a reference that should be the same for all time points. 
 
Definition:  let tα and tβ be two time points so that binary relations can be 
specified between them: 
•  tα < tβ (i.e. tα before tβ) and its inverse tα > tβ 
•  tα = tβ 
 
Definition:  a convex time interval is a contiguous period that specifies a 
range of time points such that: 
 < tα, tβ >  ≡  {  t:  tα ≤ t ≤ tβ }  
 
Definition:  the duration of a convex time interval < tα, tβ > is the time: 
 < tα, tβ >  ≡  | tβ - tα | 
 
Definition:  a non-convex time interval is a set of sub-intervals expressed 
as a union of disjoint convex intervals. 
 
 

On the basis of these definitions it is possible to define a number of convex 
interval relations using the intervals, A = < t A

α , t A
β  >, B = < t B

α , t B
β  >: 

 
•  equal (A = B)  ⇒  ( t A

α  = t B
α  ) ∧  ( t A

β = t B
β ) 

 

•  precede (A ≺ B)  ⇒  t A
β < t B

α and 
inverse succeed (B � A   ) 

 

•  meet (A ⇑  B)  ⇒  t A
β = t B

α and  
inverse met-by (B ⇓ A) 

A 

B 
A

B
A

B 
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•  overlap (A ∅  B)  ⇒  t A
α  < t B

α  < t A
β < t B

β  and 
inverse overlapped-by (B ∅ u A) 
 

•  start (A ↑  B)  ⇒   t B
α   = t A

α  < t A
β < t B

β  and 
inverse started-by (B ↑ u A) 
 

•  during (A << B)  ⇒  t B
α  < t A

α  < t A
β < t B

β  and 
inverse contains (B >> A) 
 

•  end (A ↓  B)  ⇒   t B
α   < t A

α  < t A
β  = t B

β  and 
inverse ended-by (B ↓ u A) 
 

These relations can be combined to express other relations, for example, the 
disjoint relation (>< ), i.e: 
 
 A ><  B = (A ≺ B)  ∨  (A � B) 
 

and all the containment possibilities of interval A in interval B:    
 A ↑  B ∨  (A << B)  ∨  (A ↓  B) 
 
 
Definition:  the interval intersection of convex time intervals A and B is 
defined for ¬ (A ≺ B) ∧  ¬  (A � B) as: 
 

 A � B ≡ < max ( t A
α ,  t B

α ), min ( t A
β , t B

β ) > 
 

and for (A ≺ B) ∨  (A � B) it is ∅  
  
The intersection of two convex intervals that meet each other is a non-null 
convex interval of zero duration, i.e. a time point. 
 
Definition:  the cover of convex time intervals A and B is a convex interval 
defined as: 
 

 A ∪+  B ≡ < min ( t A
α ,  t B

α ), max ( t A
β , t B

β ) > 
 

 

A 

B 
A ⊎ B 

A 

B 

A 

B 

A 

B 

A 

B 

A 

B 
A�B 
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Note that the cover is a symmetric and commutative operation, so that it can 
be applied to a set of more than two intervals: 

 { }∪ = ∪ ∪ ∪
=
+ + + +

i

n
Ci C C Cn1 1 2 Λ  

 
Definition:  the set of maximal convex sub-intervals of convex time 
intervals A and B is defined as S ({A}, {B}), such that: 
 
 

•  A � B = ∅ ⇒ S = {A, B} 
 
 
 
•  A � B ≠ ∅ ⇒ S = {A ⊎ B} 

 

 
 
 
The use of relations on event times and intervals is somewhat artificial due 
to the varying granularity of time knowledge (in practice), and the fact that 
intervals are not necessarily continuous but contain 'gaps'.  To address this 
issue, non-convex intervals are required. 
 
The set of maximal convex sub-intervals of a non-convex time interval D is 
the set of maximal convex sub-intervals of all its convex members {di}: 
 
 
 
 
 
 
 
 
Definition:  the set union of non-convex time intervals C and D is a non-
convex interval made up of the set of members in S ({C}) and the set of 
members in S ({D}): 
 

 {C} ∪  {D} ≡ S ({C}) ∪  S ({D}) 
 
 

A 

B 
S = A ⊎ B 

A 

B S = {A, B} 

d1 
S = {d1, d2, d3} 

d2 d3 

d1 
S = {d1 ⊎ d2, d3} d2 d3 
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Also note that that the cover of the set union is: 
 

 ⊎  ({C} ⋃ {D}) = < min ( tC
α ,  t D

α ),  max ( tC
β , t D

β ) > 
The set union is a symmetric and commutative operation, a property that 
allows the operation to be defined on a set of more than two intervals: 

  { }∪ = ∪ ∪ ∪
=i

n
Ci C C Cn1 1 2 Λ  

 
 
 
 

Definition:  the interval union of non-convex time intervals C and D is a 
non-convex interval denoted by: 
 

 {C} � {D} ≡ S ({C} ∪  {D}) 
 
We can note that the interval union cover is equal to the set union cover, 
and that the interval union is commutative: 

 { }
i

n
Ci

=1
 =  C1 � C2 � •    •    •   � Cn   

 

 
FORMAL CONSTRAINT SPECIFICATION 
 
Constraint specification can be expressed formally using the temporal 
object relations defined earlier.  Let the incoming constraint imposed on 
the invoker by a remote object be TCin and let the constraint imposed by 
the invoker on the remote object (invokee) be TCout. 
 
Let Pin be the invoker's computation time interval associated with the 
constraint TCin and all constraints are referenced to global time. 
 
To produce a specification for TCout as a function of TCin the following 
are needed: 
 

•  ℜ in and ℜ out are two convex interval relations 
•  a convex time interval TCR with constant duration ‖TCR‖ 
•  the composite relation TCin ℜ in TCR ℜ out TCout 

c1 c2 c3 

d1 d2 d3 
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Examples:   Let the constraint TCin = < t in
α , t in

β > and let the service to be 
invoked be required to succeed TCin by at least γ time units.  Thus in this 
case we have: 
 

•  ℜ in ≡ ≺ and ℜ out ≡ ≺ 
•  ‖TCR‖ = γ 
•  TCin ≺ TCR ≺ TCout 
 
From these relations the following inferences can be drawn: 
•  TCin ≺ TCR  ⇒  t in

β  < t R
α  

•  ‖TCR‖ = γ  ⇒  t R
β  = t R

α  + γ 

•  TCR ≺ TCout  ⇒  t R
β  < t out

α   ⇒  t out
α  > t in

β  + γ 
 i.e.  the service to be invoked succeeds TCin by more than γ time 
          units.   
 
 
 
 
 
Example:  Let the service to be invoked complete in less than γ time units 
after TCin has completed.  Thus in this case we have: 
 

•  ℜ in ≡ ∅  and ℜ out ≡ � ∨ ⇓ ∨ ∅ u ∨ ↑ u ∨ � ∨ ↓ u 
•  ‖TCR‖ = γ 
•  TCin ℜ in TCR ℜ out TCout 
 
From these relations the following inferences can be drawn: 
 
•  TCin ∅  TCR  ⇒  t R

α  < t in
β   

•  ‖TCR‖ = γ  ⇒  t R
β  = t R

α  + γ 

•  TCR ℜ out TCout  ⇒  t out
β  ≤ t R

β   ⇒  t out
β  < t in

β  + γ 
 i.e.  the service to be invoked completes in less than γ time units 
 after TCin completes.   
 

t R
β  < t in

β  + γ 

t R
β  > t in

β  + γ 

TCR 

TCout TCin 

t 
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The temporal object relations are useful for specifying and analysing 
temporal properties.  They can also be combined with resource allocation 
and schedulability considerations to support time-based object resource 
management. 

TCR 

TCin 

t 

TCR ⇓ TCout 
TCout 

TCR ∅ u 
TCout 

TCR � TCout 
TCout

TCR ↑u TCout 
TCout 

TCR ↓u TCout 
TCout 

TCR � TCout 
TCout 
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TIME CONSTRAINT PROJECTION AND 
PROPAGATION 
 
Objects must be able to view the temporal properties of other executing 
objects since they may require services from another object as part of a 
complete task.   The same requirement is posed for fault-tolerance 
redundancy where remote invocations of server objects may be required.  
This demands that time constraints are also satisfied in a distributed 
execution environment  →  time constraint projection is required for 
remote objects. 
 
 

Constraint Projection 
 
Each time constraint represents a set of possible occurrences in which 
the task beginning, task end and duration are constrained.  This 
information can be most easily interpreted on a 2-D occurrence timing 
diagram, i.e: 
 
 
  
 
 
 
 
The diagonal represents the axis of time points since Begin(time) = 
End (time). An additional variance is introduced by time-knowledge 
uncertainty due to local clock variation  →  any time point creates an 
interval in the begin-end time plane, i.e: 
 
 
 
 
 
 
 

End 

Begin 

t 

End 

Begin 

t 
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An occurrence interval for object Id can be defined between the 
Earliest Begin Time (after Taft(condition1)) and the Lastest End Time 
(before Tbef(condition2)) with a computation duration at least equal to CId.  
 
 
 
 
 
 
 
 
This can more clearly be represented on the 2-D begin-end plane. Each 
point that lies within the window satisfying the earliest and latest 
begin time, earliest and latest end time and the range of permissible 
object execution durations, is referred to as the time constraint laxity 
window, e.g: 
 
 
 
 
 
 
 
 
 
 

 
 
Periodic time constraints, which consist of finite convex subintervals (and 
combine to form non-finite non-convex intervals) are not modelled by 
this method.  A simplification that is commonly made to apply this 
approach is to restrict analysis to a limited 'local' region. 
 
Where we have two periodic objects with periods of T1 and T2 time units 
respectively (where T1, T2 > 1) then an interval of duration T1T2 will 
contain all possible relations between the subintervals  → this can be used 
as the local region in which to restrict analysis. 
 

Taft(condition1) Tbef(condition2) 
 CId 

Id:: t 

Earliest 
Begin Latest 

 Begin 
Earliest 
End 

Latest 
End 

End 

Begin 

t 

Earliest Latest 

Earliest 

Latest 
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Constraint Propagation 
 
The preceding section considers the handling of uncertainty in describing 
a global time point in terms of local clocks, but uncertainty can also arise 
in describing a time point as observed by a remote clock in terms of local 
time knowledge. 
 
A temporal relationship between two occurrences can be expressed in 
terms observed by either occurrence, e.g. when a remote client object 
imposes a time constraint on a server the time reference is either that of 
the client or the server.  Because this requires that the server node has 
knowledge of the time uncertainties of the remote node, it is not a 
practical approach in distributed systems. 
 
A better approach is to rely only on local knowledge of uncertainties 
and work from a common reference for the client and server.  Thus the 
server object interprets the imposed constraint of TCi through the 
mapping TCi        TCi' with respect to a global time, i.e: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Given this framework for propagating time constraints from invoking 
objects to become requirements on invoked objects, projection of one 
time constraint (TC1) on to another (TC2) can be looked at in general: 
 
 

Requirement 

Local 
Mapping 

 
Object 

Time Knowledge 

Local 
Mapping 

 
Object 

Time Knowledge 

Global time 

Constraint 
Requirement Constraint 
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•  The latest possible end (TC1) is projected onto the begin-axis of TC2 

creating a small occurrence window A.  In A the relation TC1 ≺ TC2 
holds, i.e. begin(TC2) > endmax(TC1). 

 
•  The earliest possible begin (TC1) is projected onto the end-axis of 

TC2 creating a small occurrence window B.  In B the relation  
 TC2 ≺ TC1 holds, i.e. end(TC2) < beginmin(TC1). 
 
•  In the region C, the intersection of TC1 and TC2 is non-null, i.e: 

end(TC2) > beginmax(TC1) and begin(TC2) < endmin(TC1). 
 
•  The other two cross-hatched regions indicate where the temporal 

relation between the two time constraints requires accurate 
knowledge of the actual begin and end points, i.e: 

 \\\  →  endmax(TC1) > begin(TC2) > endmin(TC1) 
 ///  →  beginmax(TC1) > end(TC2) > beginmin(TC1) 
 
 
 
 
 

C 

A 

B

TC 
1 

t 
End 

Begin 

TC 
2 
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End 

Begin 

t 

Min Max 

Min 

Max 
 

Time constraint laxity window contraction with time uncertainty 
 
Assume the time servers use a linear clock interpolation so that the 
service for a get-time request at node p is: 
 

 Tp(t) = ap(t)Cp(t) + bp(t), t ≥ tp
(0) 

 

where Cp(t) is the local clock time which synchronizes periodically at 
least every τ time units with other system clocks.  The synchronization 
times are denoted by the sequence tp

(i) and the bounds on the correct 
knowledge of ap(t) and bp(t) sets the scale and offset in which the time 
constraint projection is propagated. 
 
Define the terms to express the uncertainty in the local knowledge of a 
time constraint - let this be TCi: 
 

 ∆ap = max | 1 - ap(endmax(TCi)) | 
 ∆bp = max | bp(endmax(TCi)) | 
 δap = max | 1 - ap(beginmin(TCi)) | 
 δbp = max | bp(beginmin(TCi)) | 
 
Suppose the time constraint imposed in terms of local time is TCi', so that 
at a node p, an imposed time constraint TCi maps to the following local 
bounds on TCi': 
 

 beginmin(TCi') = beginmin(TCi) + δap beginmin(TCi) + δbp 
 beginmax(TCi') = beginmax(TCi) - δap beginmax(TCi) - δbp 
 endmin(TCi') = endmin(TCi) + ∆ap endmin(TCi) + ∆bp 
 endmax(TCi') = endmax(TCi) - ∆ap endmax(TCi) - ∆bp 
 
The result of the clock variations 
which cause variations in the local 
bounds on TCi', is that the constraint 
laxity window is reduced in size in all 
dimensions.  The projection of a 
globally defined time constraint to a 
locally defined time constraint is 
denoted by the mapping:  TCi        TCi' 


