
RDCS 423 - Real-time Distributed Computer Systems th/p1

TIME HANDLING

Major issues:

• Representation
• Temporal Reasoning
• System time measurement and management

Time Representation

1. Point based - world view of the system has events that occur at
a time instant, results in a state change, and takes zero time to
occur.

2. Time-interval based - activities take a finite amount of time and
have associated start and stop times.

Time point representation has the disadvantage that instantaneous events
are not decomposable into sub-events while retaining the event ordering.
The timer interval approach allows partially overlapping relations but
may also admit a cumulative loss of time if not properly managed, e.g.
clock interrupt to actual store delay.

A Real-Time system needs both representation types - time point based
for deadline specification and interval based for process computational
time specification.

running conveyor belt
looking for object

detecting an object

lowering manipulator

raising object

start conveyor belt
detect object

raise object

lower manipulator

1 2

RDCS 423 - Real-time Distributed Computer Systems th/p2

Time Constraints

Time constraints can be viewed as requirements on processes to start
executing after satisfying their start conditions, and to complete execution
before the respective deadlines. An extension is to include periodic
executions of processes with finite execution time intervals.

Formally, we can describe the time constraint as a 5-tuple:

 (Id, Taft(condition1), CId, fId, Tbef(condition2))

where: Id is the executable process or object name
 Taft(condition1) is the event after which execution of Id begins
 CId is the bound on the computation time of each instance of Id
 fId is the frequency with which the computation is to occur
 Tbef(condition2) is the deadline before which execution of Id must
 terminate

• The time interval Tbef(condition2) - Taft(condition1) is known as the

occurrence interval.
• Where no deadline constraint is imposed we have CId = ∞ (or an off-

line computation situation in contrast to on-line computation).
• In this simple time constraint model, the bounds are assumed to be

deterministic and are derived from requirements external to the
object.

Time service and synchronization

In a distributed system each site or node in the network should have access
to a source of time knowledge - i.e. a clock. It is useful to examine the way
in which time knowledge can be characterised and communicated.

Taft(condition1) Tbef(condition2) < CId
 1/fId

Id:: t

RDCS 423 - Real-time Distributed Computer Systems th/p3

Definitions:

1. A standard or reference clock i has ∀ t: Ci(t) = t

2. A clock i is correct at time to if Ci(to) = to

3. A clock i is accurate at time to if
dC t

dt
i

t to

()

=
= 1

A clock drifts if it is inaccurate at some time.

Clock synchronization: used for event ordering purposes and
enhancement of time knowledge. A clock update during synchronization
can be expressed as:

 Ci(ti) ← F [Ci1(ti1), Ci2(ti2), . . . , Cik(tik)]

where Ci1(ti1), Ci1(ti1), . . ., Cik(tik) are k clocks that are used to synchronize
Ci(•) through some algorithm F (which ideally should be monotonic to
preserve local event ordering).

Real-time systems require structured time ordering mechanisms to reason
about events - an event is a detectable, instantaneous and atomic change
in system state. The system state includes the set of clocks {Ci (•)}

Define {Ci (t) = Co} as the set of system states for which the clock i has
time Co then the following predicates can be defined:

 Taft(Co) = true if Ci(t) ≥ Co, otherwise false
 Tbef(Cd) = true if Ci(t) ≤ Cd, otherwise false

Types of Clock Systems

1. Central: one accurate clock, possibly with a standby for fault
tolerance; special purpose hardware to handle requests from any
executing process.

2. Centrally controlled: master clock polls slave clocks and clock
differences are used to correct slaves; master clock failure → new
master clock.

RDCS 423 - Real-time Distributed Computer Systems th/p4

3. Distributed: all sites homogeneous, updating their own clocks after
receipt of time from all other clocks; fault tolerance is protocol based
→ no side effects of site failure but communications traffic is
heavier.

Centrally controlled clock system algorithms

Also called master-slave clock systems. Suppose we have a master clock
i starting a clock synchronization procedure at time T1 - it has current
clock value Ci(T1) with error e1.

The clock value is sent to slave j, takes µ i

j time units to reach j and is
received at time T2. At that time the slave clock has a value Cj(T2) with
error e2:

At time T2 we have: Ci(T1) + e1+ µ i
j = Cj(T2) + e2 = T2

and the slave can compute a difference: d1 = Cj(T2) - Ci(T1)

 = µ i
j + e1 - e2

Suppose that the error difference (i.e. e1 - e2) can be modelled as a clock
skew of the slave ξj with a zero-mean random noise process E j

1, i.e:

 d1 = µ i
j + ξj - E j

1

The same process is repeated in the reverse direction, i.e. the slave reads a
clock value of Cj(T3) at time T3 and sends it to the master with the
calculated difference d1. The message has travel time µ j

i and is received
at T4 where the master reads Ci(T4) with error e4.

T1 = Ci(T1) + e1 T1 +µ i
j

T2 = Cj(T2) + e2 T3 = Cj(T3) + e3

T4 = Ci(T4) + e4 T4 -µ j
i

t

t

slave

master

RDCS 423 - Real-time Distributed Computer Systems th/p5

The master now computes d2 = Ci(T4) - Cj(T3)
 = µ j

i + e3 - e4 = µ j
i - ξj - E j

2

where e4 - e3 is the same slave clock skew ξj and E j
2 is another noise process.

From these values of d1 and d2 we have:
 (d1 - d2)/2 = [(µ i

j + ξj - E j
1) - (µ j

i - E j
2 - ξj)]/2

 = ξj + (µ i
j - µ j

i)/2 - (E j
1 - E j

2)/2

A number of successive polls can be taken to produce:
 ∃ξ j = ξj + (µi

j - µ j
i)/2 - (E j

1 - E j
2)/2

where µ i
j ≈ µ j

i and the noise processes E j
k are symmetrically distributed,

then ξj ≅ ∃ξ j which is the average clock skew which can be used to correct

the clock Cj(•). Better knowledge about µ i
j and µ j

i can also be used to
improve the estimate.

Suppose the clock is synchronized with this algorithm at least every τ
seconds and the error is given by:

 ∈ j = (µi
j - µ j

i)/2 - (E j
1 - E j

2)/2

Also suppose the clock for each slave has a maximal drift rate of δj. A
bound on the maximal clock difference for any slave is given by:

 2 2τ δmax () max ()j j j j+ ∈

i.e. the update frequency (1/τ) controls the bounds on synchronization
correctness between updates.

The imposed communication load for n processors and p polls is (2p+1)n
messages.

Compensation for the communication delays can be partially
accomplished by separating the delays into predictable and unpredictable
components: µ i

j = ∃µ i
j + ∆µ i

j .

RDCS 423 - Real-time Distributed Computer Systems th/p6

This algorithm is the basis for the TEMPO algorithm used in 4.3BSD
UNIX and the ICMP protocol. Predictable communication delay
compensation can be obtained from the ICMP routing timestamp option
field.

Distributed Clock Algorithms

This approach offers increased fault tolerance at the expense of an
increased communication load. There are numerous examples of this type
of algorithm, but to illustrate we only need to look at the two major
components:

• fundamental ordering

• accuracy enhancement

Fundamental ordering: this approach is based on message timestamping
with the following properties:

• the accuracy of clock i is bounded by a drift rate δ:

 1−
dC t

dt
i ()

 < δ << 1

• the communication interconnection graph of the computation nodes
is closely connected with diameter d.

• the network imposes an unpredictable, but bounded, message delay
D, i.e. µ < D < η where µ and η are the bounds.

Algorithm:

• the local clock is incremented on each local time event:
 Ci(t) ← Ci(t)+1

• each process with a clock sends a message to the others every τ
seconds (at least) and initiates a timestamp Tm.

• on receipt of a external Tm the receiver sets its clock to:
 Ci(t) ← max(Ci(t), Tm + µ)

RDCS 423 - Real-time Distributed Computer Systems th/p7

The communication cost of an update is n(n-1) messages for n clocks. A
bound on the variation of each clock can be written as:

 ∀ ∀ < +i j C t C t di j: () - () ()2δτ η

Note that this algorithm only achieves an ordering goal → clock
differences are bounded without improvement.

Time intervals - minimize maximum error: this approach uses
knowledge of the bounds on the error of the clocks with the following
assumptions:

• every clock i is known to be correct within the interval:

 [Ci(t) - Ei(t), Ci(t) + Ei(t)]

 where Ei(t) is a bound on the error of' clock i.

• the error interval is constructed from the following:
 - the error (made up of discretization and other constant errors)
 denoted by ∈ i has effect at the clock reset time denoted by ρi.
 - the delay from clock i being read until another clock j uses the
 readout for its update µi

j .
 - the degradation (or drift) in time that develops between consecutive
 resets is δi.

The algorithm itself has two rules: a response rule and a synchronizer
rule, i.e. a request transmitted by the synchronizer rule at node j activates
a response from node i:

The response rule from node i ≠ j is:

• Ei(t) ← ∈ i + [Ci(t) - ρi]δi

• Send [Ci(t), Ei(t)] to node j

• where the modified error bound Ei(t) indicates an interval in which
node i's clock is correct.

RDCS 423 - Real-time Distributed Computer Systems th/p8

The synchronizer rule is repeated at least every τ time units and is as
follows:

• ∀ i ≠ j: request [Ci(t), Ei(t)] from node i.

• for each [Ci(t), Ei(t)] received, check that there is a non-empty
intersection in the intervals [Ci(t) - Ei(t), Ci(t)+ Ei(t)] and

 [Cj(t) - Ej(t), Cj(t)+ Ej(t)], otherwise ignore this node.

• if Ei(t) + (1+δj)µi
j ≤ Ej(t), i.e. the error of the response plus the

response delay produce an error smaller than the local error,
otherwise ignore this node.

• if all the above conditions hold, then the synchronizer at node j can
reset its clock and improve its time knowledge via:

 Cj(t) ← Ci(t) -- clock update
 ∈ j ← Ei(t) + (1+δj)µi

j -- error update
 ρj ← Ci(t) -- reset time update

A related intersection algorithm uses a modified synchronizer rule, i.e.
the intersection of all the response time intervals [Ci(t) - Ei(t), Ci(t)+ Ei(t)]
is taken - clock update is then to the interval's midpoint, and the error
updated to half the interval. If there is no intersection interval then no
update is made:

The intersection algorithm has superior accuracy to the minimize maximum
error algorithm, but has poorer fault tolerance.

Ci(t) -Ei(t) Ei(t)

Ci(t) -Ei(t) Ei(t)

Ci(t) -Ei(t) Ei(t)

Cj(t) Ej(t)

