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REAL-TIME OPERATING SYSTEMS 
 
Any discussion of Real-Time Operating Systems (RTOSs) must separate 
the features of past, current RTOSs and future RTOSs.  The tasking 
management approach used in previous RTOSs and some current RTOSs 
employed scheduling schemes that had fixed priorities for the  
applications and offered limited time services  →  these RTOSs can be 
broadly classed as priority driven. 
 
Priority Driven Systems 
 
A typical example of this class of early RTOS was the Data General 
RTOS product which had five major functional components: 
 

•  Device drivers 
•  System call handlers 
•  Interrupt handlers 
•  Task call handlers 
•  Scheduling mechanism 
 
The operational states were: 
 

•  executing an application task 
•  handling an interrupt 
•  executing a task call and performing rescheduling 
 
All tasks had fixed priorities and the scheduler maintains two task queues 
- a ready task queue and a suspended task queue. 
 
The highest priority task in the ready task queue has control of the 
processor until a task call in performed by the executing task or by 
invocation of the scheduler on interrupt exit.  While this provided a 
relatively simple system  →  there was a complete absence of explicit 
time notions in control and management structures  →  any user task 
could vary its execution time that could adversely influence system 
behaviour. 
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Priority Driven Systems with Enhanced Time Services 
 
An example of the class of operating system is provided by Intel who 
introduced the iRMX 80x86 family of microprocessors.  This type of 
operating system supported a rich set of time services and modern 
approaches for task management, interrupt handling, synchronization, and 
communication.  Some important features were: 
 

•  pre-emptive priority scheduling combined with a round-robin 
mechanism and periodic reactivation of tasks. 

•  interrupt handler is fast and predictable 
•  message communication employs mailbox structures combined with 

semaphores for intertask communications. 
•  time management is local and alarm services allowing periodic and 

aperiodic awakening are provided. 
 
These operating systems still do not include an explicit notion of time for 
resource allocation and task execution decisions.  A standardisation effort 
for this type of operating system was initiated by Motorola in their 
RTEID (Real-Time Executive Interface Definition), but was later 
overtaken by the IEEE POSIX (Portable Operating Systems Interface 
uniX) standardisation effort. 
 
Operating systems in this class still allow interrupt service routines to pre-
empt running tasks with imminent deadlines  →  can result in a deadline 
miss.  RTEID allowed user programs to alter real-time characteristics of 
the entire system using priority set primitives.  A limited, and not 
completely satisfactory solution,  to this problem was provided by 
allowing the operating system to restrict task action 'scenarios'  →  led to 
research interest in another operating system class. 
 

  
Time Driven Scheduling based Systems 
 
The primary model used in Time Driven Scheduling (TDS) is a time 
varying value function which is used as a measure of criticality of a task. 
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The assumptions used in the TDS model are: 
•  the computation time of tasks have known stochastic distribution 

parameters. 
•  task completion time can be analysed in terms of criticality 
 
The model defines each value function into three domain sections, and 
over each section it is given by an expression of the form: 
 

 v(t) = K1 + K2t + K3t2 + K4e-K
5
t 

 

TDS uses 15 coefficients to define each value function and the following 
diagrams illustrate four of the common time driven scheduling value 
functions: 
 
 
 
 
  
 
  
 
 
 
 
 
 
 
•  Deadline Driven - hard deadline at d  →  no reason to schedule after 

this. 
 

•  Graceful Degradation - soft deadline  →  exponential drop to zero:  
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•  First deadline - linearly increasing criticality followed by no reason 
to schedule:  
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•  Minimal Laxity  -  Maximum criticality is reached before the 

deadline and after that no reason to schedule. 
 
Combining the TDS model with a general time constraint model (defined 
in more detail later) permits the following value function to be applied: 
 
 
 
 
 
 
 
and the value function can be represented by: 
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The value function based model is used with a best-effort scheduling 
algorithm, which has the goal of maximising the total value of all 
completed tasks over all workloads and given value functions. 
 
In the algorithm it is necessary to compute an overhead estimation 
heuristic at each scheduling point to obtain a probability of overload, so 
that overloads where tasks cannot meet deadlines are predictable. In the 
event that a near overload occurs (i.e. this probability exceeds some 
threshold) then a load shedding heuristic is invoked which aborts tasks to 
decrease the probability below the threshold.  The order of task abortion 
conforms to an expected value density. Such heuristic algorithms are 
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computationally expensive, so most TDS approaches use approximation 
schemes. 
In the design of TDS algorithms, the scheduling policy and scheduling 
mechanisms are separated  →  policy modules are located in the operating 
system kernel and function calls carry out communication between 
modules and the scheduling mechanisms. 
Typical primitives are: 
 

 Set_Policy (schedule, policy_module_name) 
   Set_Attribute (schedule, K1, K2, . . . ) 
 
The advantage of locating the policy modules in the kernel is to reduce 
system access overhead, but the disadvantage is an increase in 
maintainability overhead. 
 
Note that the TDS algorithm does not provide guaranteed deadline 
compliance, but it can be overlayed on a conventional operating system 
by creating a global reference for task value functions and using the task 
abort/restart capability based on the value function of all tasks. 
 
 

Deadline-Guaranteeing Operating Systems 
 
An example of this class of operating system is the Spring kernel 
developed by the University of Massachusetts (USA) - primary 
scheduling is based on explicit time constraints. 
 
The main features are: 
 

•  Architecture support:  the operating environment is a physically 
distributed multiprocessor system where each multiprocessor has one 
or more system processors, one or more application processors, and 
an I/O subsystem.  Management activities (e.g. scheduling and 
allocation) are executed by the system processor and I/O subsystem 
so that all overhead activities are offloaded from application 
processes.  This improves both performance and temporal 
determinism of the application processes. Interrupts are handled by 
the I/O subsystem  →  they also do not disturb the application 
processes. 
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•  Allocation and Scheduling:  a table of guaranteed tasks is maintained 
with resource allocation and scheduling for execution being 
implemented in four modules: 

 

1.  Dispatcher - initiates task from the table of already ordered 
guaranteed tasks. 

 

2. Local Scheduler - verifies local deadline satisfaction and orders 
the guaranteed task table. 

 

3. Global Scheduler - allocates remote processor nodes for task 
execution that cannot be guaranteed locally. 

 

4. Meta-level controller - an environment change controller and 
supporter of user interfaces. 

 
 

•  Segmentation:  according to applications and their required resources, 
the OS produces metrics and resource segment sizes.  Temporal 
constraints, data structures and memory modules are treated as 
resources with segments that can be allocated to computations. 

 

•  Task management:  the Spring kernel provides primitives to 
manipulate scheduling entities, e.g.  task criticalities can be queried 
and set, off-line tasks can be queued, task execution suspended and 
resumed, and explicit time constraints can be specified. 

 

•  Memory management:  the Spring kernel makes no use of virtual 
memory policies due to page fault and page replacement 
indeterminacy.  A resource segmentation approach is followed 
instead, i.e. memory is pre-allocated  →  restricts the dynamic 
behaviour of data structures. 

 

•  Inter-process communication:  message passing via mailboxes is 
supported with no use of shared memory.  Note that no mutual 
exclusion mechanism is required due to the scheduling approach 
used, i.e. part of the verification of guarantees is to check for the 
availability of data resource segments. 
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Assessment of RTOS approaches 
 
An identifiable trend is the evolution from priority based systems through 
time-deterministic systems to time-motivated systems. 
Several problems areas remain, e.g: 
•  implementation specific solutions to obtain hard real-time 

performance  →  difficult to generalise. 
•  need to provide for execution begin time constraint and a deadline 

constraint  →  aim is to enhance predictability. 
•  need to include fault tolerance goals  →  damage containment 

(graceful degradation) under exception conditions. 
 
 
SUPPORT ENVIRONMENTS FOR REAL-TIME SYSTEMS 
 
Real-Time Operating Systems (RTOSs) provide a wide range of run-time 
facilities to support distributed real-time systems, e.g. task scheduling, 
resource management, fault and interrupt handling, and support for 
multiple processor operation.  There are two common approaches to 
providing multiple processor support: 
 

1. Shared memory systems - the scheduler determines process 
distribution to processors as well as process scheduling 

2. Loosely-coupled systems - an RTOS on each processor has 
application programs that use a kernel providing communication 
primitives 

 
As we are primarily interested in loosely-coupled distributed systems  →   
RTOSs with suitable inter-processor communication services are of most 
interest - the most common and popular is Real-Time variants of the Unix 
operating system. 
 
The original Unix OS  was  not designed to support real-time systems, i.e. 
aimed at time-sharing  →  did not have a pre-emptive scheduling 
mechanism. Two approaches emerged to modify Unix - graft an RT 
kernel onto Unix or redesign from scratch →  led to the effort to retain a 
Unix style interface and standardise it. 
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Portable Operating System Interface uniX (POSIX) - IEEE 1003 
 
The POSIX operating systems environment (OSE) has been assembled by 
working group 1003.0 of the IEEE TC on Operating Systems.  It offers a 
standard set of interfaces to the primary operating system building blocks, 
providing portability and interoperability standards. 
 

The reference model used in the POSIX OSE has two standard interfaces, 
an application program interface (API) and an external environment 
interface (EEI): 
 
 

The APIs are generate procedure calls made 
to the application platform (i.e. the host 
computer operating system).  Portability is 
ensured through standard APIs. 
 

The external environment is typically 
composed of I/O devices and 
communication services - standard EEIs 
provide for interoperability. 
 

POSIX OSE system services include both 
language and operating systems services.   
 
 

To make services in the OSE accessible from application programs, 
language bindings (or subprogram calls in specific languages) are 
provided. The kernel standard (IEEE 1003.1 or ISO 9945.1) is defined in 
the C-language but FORTRAN (1003.9) and Ada language bindings 
(1003.5) are also provided. 
 

Other standards in the POSIX OSE include shell and utilities (1003.2) , 
real-time extensions (1003.4), security extensions (1003.6), system 
administration (1003.7), network file access (1003.8), and a protocol 
independent network interface (1003.12). 
 
Additional APIs in the POSIX OSE include non-POSIX standards, e.g. 
Structured Query Language (ISO 9075) and Network Data Language 
(ISO 8907).    
 

Application
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POSIX based applications are to be constructed is based on a hierarchy of 
software components: 
 

The lowest level is made up 
of generic system services,  
with higher levels provided 
by APIs specific to industries 
(e.g. the Interactive Multimedia 
Association's API for computer 
aided training systems) and 
specific to organisations. 
 

The benefits of open-systems 
standards are well acknowledged  
by the industry → should 
lead to more efficient software 
development on a wider range 
of hardware platforms.  
 
Real-Time Extensions (IEEE 1003.1b):  binary semaphores, memory 
locking, shared memory, priority scheduling, asynchronous event 
notification, clocks and timers, interprocess message passing, 
asynchronous and synhronous I/O, and real time files. 
 
Threads Interface (IEEE 1003.1c):  unlike conventional UNIX 
processes, each POSIX process supports multiple threads of execution in 
the same process address space, sharing file descriptors, process ID and 
other context information. Importantly, I/O operations which normally 
block UNIX processes do not block other threads of execution in the 
same process.  Primatives include thread creation and control, thread 
scheduling and synchronisation, thread cancellation and cleanup, signals.  
 
Standard Revision: the Austin Common Standards Revision Group was 
established to produce a common revision of ISO/IEC 9945 and  IEEE 
Std 1003 and the appropriate parts of the Single UNIX Specification. The 
result was a common IEEE POSIX (IEEE 1003-2001) and Open Group 
Single UNIX Specification Version 3 released in Jan 2002 (with ISO/IEC 
approval to follow shortly). 
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RTOS  PERFORMANCE  ISSUES 
 
It is important that the real-time services provided by an RTOS are 
implemented efficiently and that appropriate benchmarks are used to 
determine suitability for a user's application. 
 
Many RTOS vendors make claims for their implementations which do not 
necessarily represent worst-case operating conditions. 
 
Some of the basic performance measures are: 
 

•  context switching time:  the time to switch the CPU from executing 
one process to another. 

 

•  pre-emption latency:  the time delay before a process with a higher 
priority than the currently executing process will start to execute. 

 

•  interrupt latency:  the time from interrupt reception to the time a 
handler commences execution. 

 
 

In general, a "real-time" kernel can achieve context switching in under 
100 µsec whereas conventional operating systems often have times 
exceeding 1 msec. 
 
The actual situation is far more involved, as the following diagram 
suggests: 
 
 
 
 
 
 
 
 
 
It is important that the application context be considered, i.e. if 10 msec 
laxities on deadlines are acceptable, and the task loading is relatively 
light, then a non real-time operating system could be acceptable in this 
application. 
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The primary cause of the significant variation in context switch times in 
general purpose operating systems can be identified: 
 
 

•  Their kernels have critical regions which block interrupts for 
extended periods  →  prevents context switches. 

 

•  Memory protection is strongly enforced so that each real-time 
process (task) is mapped to a Unix (for example) process and sharing 
memory by executing functions in the memory space of another 
process is indirect and inefficient. 

 
 

The approach used in current RTOSs is to provide some form of light-
weight process model, e.g: 
 

•  VxWorks uses a shared code and data memory space  →  provides 
for minimal overhead in spawning additional processes. 

 

•  LynxOS (and other POSIX RTOS variants) uses threads  →  again 
minimal overhead in thread creation and switching. 

 
 
Examples of Real-Time Unix based products (i.e. Unix like shell and 
utilities but proprietary real-time kernel): 
 

Regulus (Alcyon), pSOS+ (Software Components Group), D-Nix (Diab 
Systems), RTU (Concurrent/Masscomp), IDRIS (Whitesmiths), VxWorks 
(Wind River Systems), QNX (Quantum Software Systems), PDOS 
(Eyring Research), LynxOS (Lynx Real Time Systems), OS9000  
(Microware). 
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THE  LYNX  REAL-TIME  OPERATING  SYSTEM 
 
LynxOS is A 'UNIX-like' real-time operating system that is compliant 
with IEEE P1003.1 Portable Operating Systems Standard for Computer 
Environments (POSIX) and AT&T System V interface definition (SVID). 
 

LynxOS is also compatible with the real-time extensions (P1003.1b) and 
the threads extension (P1003.1c) POSIX standards. 
 

LynxOS is available for the following platforms:  i860, 80x86, Sparc, 
R3000, 680x0, 880x0. 
 

Application areas for LynxOS encompasses both embedded and non-
embedded real-time systems - ranging from process control, robotics, 
manufacturing, defence, aerospace and communications systems. 
 
 

I/O Interrupt Processing and Kernel Threads 
 

This is a critical performance area for RTOSs as interrupt processing runs 
at a higher priority  than user tasks and some interrupt processing may 
take 100 µsec → 1 msec (e.g. network protocol handling).   
Also the number of these interrupts may not be bounded  →  high-priority 
user tasks may be delayed for unpredictable periods. 
 
LynxOS provides a mechanism to handle this problem with kernel 
threads.  Threads are the smallest independently schedulable objects with 
their own priority and register stack. User threads exist within the address 
space of a user 
process, and 
kernel threads 
share the kernel's 
address space. 
The scheduler 
treats both thread 
types in the same 
way - i.e. on a 
priority basis, e.g: 
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A scheme, referred to as priority tracking, is used to set the 'best' priority 
for a kernel thread: 
 

•  The priority of the kernel thread is inherited from the highest priority 
application it serves. 

 

•  To improve the resolution of priority levels, 1/2 steps are allowed for 
kernel threads. 

 

•  Example:  suppose we have a kernel thread running at priority 18 
serving some application, and an application running at priority 23  →  
the kernel thread is raised to priority 23-1/2 so that all applications of  
priority greater than 23 will run before this thread and this thread will 
run before all applications with priority of 23 or less. 

 
Kernel threads have a beneficial effect on driver response, task response 
and task completion times, e.g: 
 
No kernel threads:     With kernel threads: 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
The task completion time is improved by allowing the low level interrupt 
handler to disable future interrupts from the device prior to scheduling the 
kernel thread (which then re-enables them)  →  the thread will not run 
until higher priority applications complete.  Each device is restricted to a 
single interrupt while higher priority applications are pending. 
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Benchmarks for Real-Time Operating Systems 
 
There are two benchmarks which attempt to provide a more balanced set 
of criteria for performance metrics on RTOSs:  Rhealstones and 
Hartstones. 
 

 
The Rhealstone Benchmark 
 
Defined as the sum of six individual performance measurements: 
 

 Rhealstone  =  6

1 2 3 4 5 6t t t t t t+ + + + +
 

 

where t1, . . . , t6 are times in seconds obtained from the following 
measurements: 
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           =        +  
 
 
i.e.  the Semaphore Shuffle Time is the delay between the attempted 
acquisition of a task's semaphore and the reactivation of the task blocked 
on a semaphore wait. 
 
 
 
 
 
 
           =        +  
 
 
 

i.e.  the Deadlock Break Time is the time the executive takes to resolve 
the conflict occurring when a higher-priority task pre-empts a lower-
priority task that holds a resource needed by the higher priority task. 
 
 
 
 
 
 
 
 

i.e.  the Intertask Message Latency is the time taken to transfer a non-zero 
length message via pipes, queues, or stream files between tasks.  
 
Weighting factors can be applied to construct an application specific 
benchmark, e.g: 

 Weighted Rhealstone  =  
n n n n n n

n n n n n n
1 2 3 4 5 6

1 1 2 2 3 3 4 4 5 5 6 6

+ + + + +
+ + + + +t t t t t t
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The Hartstone Benchmark 
  
The Hartstone uses a variant of the Whetstone benchmark for the basic 
computational load imposed on the processor. The benchmark suite is 
written in the Ada language and is designed to measure the following: 
 

•  performance of the Ada runtime environment 
•  efficiency of handling multiple real-time tasks 
 
The test set is made up of five series of tests; the first is the periodic 
harmonic (PH) test: 
 

•  Consists of five independent  periodic Ada tasks which have an 
assigned frequency, priority and workload.  Task frequencies are made 
harmonic, i.e. are an integral multiple of the frequency of the lowest 
frequency task. The main loop of each task executes a Kilo-Whetstone. 

 

•  The task dependency diagram: 
 

   
 

A Hartstone task must execute a specified number of Kilo-Whetstones in 
its scheduled period, and the rate at which the task performs this is 
measured in Kilo-Whetstone Instructions per second (KWIPS).  The 
workload rate is then the per-period work load multiplied by the task 
frequency.  
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The task must also satisfy a deadline for completion of the assumed 
workload - which is the next scheduled activation for the task.  Failure to 
complete on time results in a missed deadline being recorded for that task - 
load shedding is used to skip deadlines and continue operation of the test. 
 
Task priorities are static and are assigned at initialisation of the test using 
a rate-monotonic scheduling discipline (i.e. high frequency tasks are 
assigned a higher priority than low frequency tasks). 
 
Hartstone PH Tests:  A baseline test is performed to obtain an 
acceptable task workload utilization without any missed deadlines.  
Utilization in the baseline test can be compared with 100% utilisation in 
the calibration test done with no tasking and only the computational load 
applied, e.g. consider a baseline test: 
 

        
The first test adjusts the frequency of the highest frequency task (task 5) 
for each successive cycle of the test until some task misses a deadline.  
The test continues with this task frequency until a specified number of 
deadline misses or skips is recorded, e.g. consider the results of a typical 
first experiment: 
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There are three additional "experiments" which are run in the PH test: 
 
1. All task frequencies are harmonically scaled upwards (by 10% on 

each new test cycle). 
 

2. All task workloads are scaled upwards (by 1 KW per period on each 
new test cycle). 

 

3. New tasks with the same frequency and workload as task 3 are added 
on each new test cycle. 

 
The purpose of each additional experiment is to determine the 
computational load and associated overhead for periodic tasks that 
exceeds the capability of the run-time environment and forces deadlines 
to be missed. 
 


