
RDCS 423 - Real-time Distributed Computer Systems rt/p1

REAL-TIME OPERATING SYSTEMS

Any discussion of Real-Time Operating Systems (RTOSs) must separate
the features of past, current RTOSs and future RTOSs. The tasking
management approach used in previous RTOSs and some current RTOSs
employed scheduling schemes that had fixed priorities for the
applications and offered limited time services → these RTOSs can be
broadly classed as priority driven.

Priority Driven Systems

A typical example of this class of early RTOS was the Data General
RTOS product which had five major functional components:

• Device drivers
• System call handlers
• Interrupt handlers
• Task call handlers
• Scheduling mechanism

The operational states were:

• executing an application task
• handling an interrupt
• executing a task call and performing rescheduling

All tasks had fixed priorities and the scheduler maintains two task queues
- a ready task queue and a suspended task queue.

The highest priority task in the ready task queue has control of the
processor until a task call in performed by the executing task or by
invocation of the scheduler on interrupt exit. While this provided a
relatively simple system → there was a complete absence of explicit
time notions in control and management structures → any user task
could vary its execution time that could adversely influence system
behaviour.

RDCS 423 - Real-time Distributed Computer Systems rt/p2

Priority Driven Systems with Enhanced Time Services

An example of the class of operating system is provided by Intel who
introduced the iRMX 80x86 family of microprocessors. This type of
operating system supported a rich set of time services and modern
approaches for task management, interrupt handling, synchronization, and
communication. Some important features were:

• pre-emptive priority scheduling combined with a round-robin
mechanism and periodic reactivation of tasks.

• interrupt handler is fast and predictable
• message communication employs mailbox structures combined with

semaphores for intertask communications.
• time management is local and alarm services allowing periodic and

aperiodic awakening are provided.

These operating systems still do not include an explicit notion of time for
resource allocation and task execution decisions. A standardisation effort
for this type of operating system was initiated by Motorola in their
RTEID (Real-Time Executive Interface Definition), but was later
overtaken by the IEEE POSIX (Portable Operating Systems Interface
uniX) standardisation effort.

Operating systems in this class still allow interrupt service routines to pre-
empt running tasks with imminent deadlines → can result in a deadline
miss. RTEID allowed user programs to alter real-time characteristics of
the entire system using priority set primitives. A limited, and not
completely satisfactory solution, to this problem was provided by
allowing the operating system to restrict task action 'scenarios' → led to
research interest in another operating system class.

Time Driven Scheduling based Systems

The primary model used in Time Driven Scheduling (TDS) is a time
varying value function which is used as a measure of criticality of a task.

RDCS 423 - Real-time Distributed Computer Systems rt/p3

The assumptions used in the TDS model are:
• the computation time of tasks have known stochastic distribution

parameters.
• task completion time can be analysed in terms of criticality

The model defines each value function into three domain sections, and
over each section it is given by an expression of the form:

 v(t) = K1 + K2t + K3t2 + K4e-K
5
t

TDS uses 15 coefficients to define each value function and the following
diagrams illustrate four of the common time driven scheduling value
functions:

• Deadline Driven - hard deadline at d → no reason to schedule after

this.

• Graceful Degradation - soft deadline → exponential drop to zero:

i.e. v(t) =
0 0

01

4
5

≤
< ≤
>







 − −

t
K t d
K e t dK t d()

Value

d
t

Deadline Driven

t

Graceful Degradation
d

t

First Deadline
d

t

Minimal Laxity
d-c

RDCS 423 - Real-time Distributed Computer Systems rt/p4

• First deadline - linearly increasing criticality followed by no reason
to schedule:

 i.e. v(t) =
0 0

0
0

1 2

≤
+ < ≤

>









t
K K t t d

t d

• Minimal Laxity - Maximum criticality is reached before the

deadline and after that no reason to schedule.

Combining the TDS model with a general time constraint model (defined
in more detail later) permits the following value function to be applied:

and the value function can be represented by:

i.e. v(t) =
K K t begin t K K begin
K begin t end
K K t t end K K end

1 1 2 1 1 1 2 1

1 2

1 3 2 3 1 3 2 3

0

0

, , max , , min

, max min

, , min , , max

+ ≤ + =
< ≤

− > − =









()

()

The value function based model is used with a best-effort scheduling
algorithm, which has the goal of maximising the total value of all
completed tasks over all workloads and given value functions.

In the algorithm it is necessary to compute an overhead estimation
heuristic at each scheduling point to obtain a probability of overload, so
that overloads where tasks cannot meet deadlines are predictable. In the
event that a near overload occurs (i.e. this probability exceeds some
threshold) then a load shedding heuristic is invoked which aborts tasks to
decrease the probability below the threshold. The order of task abortion
conforms to an expected value density. Such heuristic algorithms are

t

Value

begin min begin max end max end min

RDCS 423 - Real-time Distributed Computer Systems rt/p5

computationally expensive, so most TDS approaches use approximation
schemes.
In the design of TDS algorithms, the scheduling policy and scheduling
mechanisms are separated → policy modules are located in the operating
system kernel and function calls carry out communication between
modules and the scheduling mechanisms.
Typical primitives are:

 Set_Policy (schedule, policy_module_name)
 Set_Attribute (schedule, K1, K2, . . .)

The advantage of locating the policy modules in the kernel is to reduce
system access overhead, but the disadvantage is an increase in
maintainability overhead.

Note that the TDS algorithm does not provide guaranteed deadline
compliance, but it can be overlayed on a conventional operating system
by creating a global reference for task value functions and using the task
abort/restart capability based on the value function of all tasks.

Deadline-Guaranteeing Operating Systems

An example of this class of operating system is the Spring kernel
developed by the University of Massachusetts (USA) - primary
scheduling is based on explicit time constraints.

The main features are:

• Architecture support: the operating environment is a physically
distributed multiprocessor system where each multiprocessor has one
or more system processors, one or more application processors, and
an I/O subsystem. Management activities (e.g. scheduling and
allocation) are executed by the system processor and I/O subsystem
so that all overhead activities are offloaded from application
processes. This improves both performance and temporal
determinism of the application processes. Interrupts are handled by
the I/O subsystem → they also do not disturb the application
processes.

RDCS 423 - Real-time Distributed Computer Systems rt/p6

• Allocation and Scheduling: a table of guaranteed tasks is maintained
with resource allocation and scheduling for execution being
implemented in four modules:

1. Dispatcher - initiates task from the table of already ordered
guaranteed tasks.

2. Local Scheduler - verifies local deadline satisfaction and orders
the guaranteed task table.

3. Global Scheduler - allocates remote processor nodes for task
execution that cannot be guaranteed locally.

4. Meta-level controller - an environment change controller and
supporter of user interfaces.

• Segmentation: according to applications and their required resources,
the OS produces metrics and resource segment sizes. Temporal
constraints, data structures and memory modules are treated as
resources with segments that can be allocated to computations.

• Task management: the Spring kernel provides primitives to
manipulate scheduling entities, e.g. task criticalities can be queried
and set, off-line tasks can be queued, task execution suspended and
resumed, and explicit time constraints can be specified.

• Memory management: the Spring kernel makes no use of virtual
memory policies due to page fault and page replacement
indeterminacy. A resource segmentation approach is followed
instead, i.e. memory is pre-allocated → restricts the dynamic
behaviour of data structures.

• Inter-process communication: message passing via mailboxes is
supported with no use of shared memory. Note that no mutual
exclusion mechanism is required due to the scheduling approach
used, i.e. part of the verification of guarantees is to check for the
availability of data resource segments.

RDCS 423 - Real-time Distributed Computer Systems rt/p7

Assessment of RTOS approaches

An identifiable trend is the evolution from priority based systems through
time-deterministic systems to time-motivated systems.
Several problems areas remain, e.g:
• implementation specific solutions to obtain hard real-time

performance → difficult to generalise.
• need to provide for execution begin time constraint and a deadline

constraint → aim is to enhance predictability.
• need to include fault tolerance goals → damage containment

(graceful degradation) under exception conditions.

SUPPORT ENVIRONMENTS FOR REAL-TIME SYSTEMS

Real-Time Operating Systems (RTOSs) provide a wide range of run-time
facilities to support distributed real-time systems, e.g. task scheduling,
resource management, fault and interrupt handling, and support for
multiple processor operation. There are two common approaches to
providing multiple processor support:

1. Shared memory systems - the scheduler determines process
distribution to processors as well as process scheduling

2. Loosely-coupled systems - an RTOS on each processor has
application programs that use a kernel providing communication
primitives

As we are primarily interested in loosely-coupled distributed systems →
RTOSs with suitable inter-processor communication services are of most
interest - the most common and popular is Real-Time variants of the Unix
operating system.

The original Unix OS was not designed to support real-time systems, i.e.
aimed at time-sharing → did not have a pre-emptive scheduling
mechanism. Two approaches emerged to modify Unix - graft an RT
kernel onto Unix or redesign from scratch → led to the effort to retain a
Unix style interface and standardise it.

RDCS 423 - Real-time Distributed Computer Systems rt/p8

Portable Operating System Interface uniX (POSIX) - IEEE 1003

The POSIX operating systems environment (OSE) has been assembled by
working group 1003.0 of the IEEE TC on Operating Systems. It offers a
standard set of interfaces to the primary operating system building blocks,
providing portability and interoperability standards.

The reference model used in the POSIX OSE has two standard interfaces,
an application program interface (API) and an external environment
interface (EEI):

The APIs are generate procedure calls made
to the application platform (i.e. the host
computer operating system). Portability is
ensured through standard APIs.

The external environment is typically
composed of I/O devices and
communication services - standard EEIs
provide for interoperability.

POSIX OSE system services include both
language and operating systems services.

To make services in the OSE accessible from application programs,
language bindings (or subprogram calls in specific languages) are
provided. The kernel standard (IEEE 1003.1 or ISO 9945.1) is defined in
the C-language but FORTRAN (1003.9) and Ada language bindings
(1003.5) are also provided.

Other standards in the POSIX OSE include shell and utilities (1003.2) ,
real-time extensions (1003.4), security extensions (1003.6), system
administration (1003.7), network file access (1003.8), and a protocol
independent network interface (1003.12).

Additional APIs in the POSIX OSE include non-POSIX standards, e.g.
Structured Query Language (ISO 9075) and Network Data Language
(ISO 8907).

Application
Software

API

Application
Platform

EEI

External
Environment

RDCS 423 - Real-time Distributed Computer Systems rt/p9

POSIX based applications are to be constructed is based on a hierarchy of
software components:

The lowest level is made up
of generic system services,
with higher levels provided
by APIs specific to industries
(e.g. the Interactive Multimedia
Association's API for computer
aided training systems) and
specific to organisations.

The benefits of open-systems
standards are well acknowledged
by the industry → should
lead to more efficient software
development on a wider range
of hardware platforms.

Real-Time Extensions (IEEE 1003.1b): binary semaphores, memory
locking, shared memory, priority scheduling, asynchronous event
notification, clocks and timers, interprocess message passing,
asynchronous and synhronous I/O, and real time files.

Threads Interface (IEEE 1003.1c): unlike conventional UNIX
processes, each POSIX process supports multiple threads of execution in
the same process address space, sharing file descriptors, process ID and
other context information. Importantly, I/O operations which normally
block UNIX processes do not block other threads of execution in the
same process. Primatives include thread creation and control, thread
scheduling and synchronisation, thread cancellation and cleanup, signals.

Standard Revision: the Austin Common Standards Revision Group was
established to produce a common revision of ISO/IEC 9945 and IEEE
Std 1003 and the appropriate parts of the Single UNIX Specification. The
result was a common IEEE POSIX (IEEE 1003-2001) and Open Group
Single UNIX Specification Version 3 released in Jan 2002 (with ISO/IEC
approval to follow shortly).

Application
Programs

Organisation specific
components

Industry standard
components

Open-system standard interfaces

Operating System and Hardware

RDCS 423 - Real-time Distributed Computer Systems rt/p10

RTOS PERFORMANCE ISSUES

It is important that the real-time services provided by an RTOS are
implemented efficiently and that appropriate benchmarks are used to
determine suitability for a user's application.

Many RTOS vendors make claims for their implementations which do not
necessarily represent worst-case operating conditions.

Some of the basic performance measures are:

• context switching time: the time to switch the CPU from executing
one process to another.

• pre-emption latency: the time delay before a process with a higher
priority than the currently executing process will start to execute.

• interrupt latency: the time from interrupt reception to the time a
handler commences execution.

In general, a "real-time" kernel can achieve context switching in under
100 µsec whereas conventional operating systems often have times
exceeding 1 msec.

The actual situation is far more involved, as the following diagram
suggests:

It is important that the application context be considered, i.e. if 10 msec
laxities on deadlines are acceptable, and the task loading is relatively
light, then a non real-time operating system could be acceptable in this
application.

Context switch time

Non-real-time
operating system

Real-time operating
system Number

context
switches

RDCS 423 - Real-time Distributed Computer Systems rt/p11

The primary cause of the significant variation in context switch times in
general purpose operating systems can be identified:

• Their kernels have critical regions which block interrupts for
extended periods → prevents context switches.

• Memory protection is strongly enforced so that each real-time
process (task) is mapped to a Unix (for example) process and sharing
memory by executing functions in the memory space of another
process is indirect and inefficient.

The approach used in current RTOSs is to provide some form of light-
weight process model, e.g:

• VxWorks uses a shared code and data memory space → provides
for minimal overhead in spawning additional processes.

• LynxOS (and other POSIX RTOS variants) uses threads → again
minimal overhead in thread creation and switching.

Examples of Real-Time Unix based products (i.e. Unix like shell and
utilities but proprietary real-time kernel):

Regulus (Alcyon), pSOS+ (Software Components Group), D-Nix (Diab
Systems), RTU (Concurrent/Masscomp), IDRIS (Whitesmiths), VxWorks
(Wind River Systems), QNX (Quantum Software Systems), PDOS
(Eyring Research), LynxOS (Lynx Real Time Systems), OS9000
(Microware).

RDCS 423 - Real-time Distributed Computer Systems rt/p12

Priority 18
Priority 5

Priority 10
Priority 36

Kernel Thread 1
Thread 2

Thread 1
Thread 2

Process A

Priority 23 Process B Thread 1

THE LYNX REAL-TIME OPERATING SYSTEM

LynxOS is A 'UNIX-like' real-time operating system that is compliant
with IEEE P1003.1 Portable Operating Systems Standard for Computer
Environments (POSIX) and AT&T System V interface definition (SVID).

LynxOS is also compatible with the real-time extensions (P1003.1b) and
the threads extension (P1003.1c) POSIX standards.

LynxOS is available for the following platforms: i860, 80x86, Sparc,
R3000, 680x0, 880x0.

Application areas for LynxOS encompasses both embedded and non-
embedded real-time systems - ranging from process control, robotics,
manufacturing, defence, aerospace and communications systems.

I/O Interrupt Processing and Kernel Threads

This is a critical performance area for RTOSs as interrupt processing runs
at a higher priority than user tasks and some interrupt processing may
take 100 µsec → 1 msec (e.g. network protocol handling).
Also the number of these interrupts may not be bounded → high-priority
user tasks may be delayed for unpredictable periods.

LynxOS provides a mechanism to handle this problem with kernel
threads. Threads are the smallest independently schedulable objects with
their own priority and register stack. User threads exist within the address
space of a user
process, and
kernel threads
share the kernel's
address space.
The scheduler
treats both thread
types in the same
way - i.e. on a
priority basis, e.g:

RDCS 423 - Real-time Distributed Computer Systems rt/p13

A scheme, referred to as priority tracking, is used to set the 'best' priority
for a kernel thread:

• The priority of the kernel thread is inherited from the highest priority
application it serves.

• To improve the resolution of priority levels, 1/2 steps are allowed for
kernel threads.

• Example: suppose we have a kernel thread running at priority 18
serving some application, and an application running at priority 23 →
the kernel thread is raised to priority 23-1/2 so that all applications of
priority greater than 23 will run before this thread and this thread will
run before all applications with priority of 23 or less.

Kernel threads have a beneficial effect on driver response, task response
and task completion times, e.g:

No kernel threads: With kernel threads:

The task completion time is improved by allowing the low level interrupt
handler to disable future interrupts from the device prior to scheduling the
kernel thread (which then re-enables them) → the thread will not run
until higher priority applications complete. Each device is restricted to a
single interrupt while higher priority applications are pending.

Interrupt Server

Interrupt Server
Driver response
time for B

A & B interrupt
Dev A:

Dev B:

IS

KT
Driver response
time for B

A & B interrupt

IS

KT

App.

IS

Task:

Device:

App.

KT

Task Completion time

IS
ApplicationApp.

Task Completion time

IS

App.

RDCS 423 - Real-time Distributed Computer Systems rt/p14

Benchmarks for Real-Time Operating Systems

There are two benchmarks which attempt to provide a more balanced set
of criteria for performance metrics on RTOSs: Rhealstones and
Hartstones.

The Rhealstone Benchmark

Defined as the sum of six individual performance measurements:

 Rhealstone = 6

1 2 3 4 5 6t t t t t t+ + + + +

where t1, . . . , t6 are times in seconds obtained from the following
measurements:

∆1 ∆ 2 ∆ 3

TASK 1
TASK 2

TASK 3
TASK
SWITCH
TIME

t :
1 All tasks have

equal priority

∆
1 ∆

2

TASK 1
TASK 2

TASK 3
PREEMPTION
TIME

t :
2

Priorities:
 TASK3 > TASK2 > TASK1

∆

TASK 1

INTERRUPT
HANDLER INTERRUPT

LATENCY
t :
3

= ∆1 + ∆2 + ∆3
 3

= ∆1 + ∆2
 2

= ∆

RDCS 423 - Real-time Distributed Computer Systems rt/p15

 = +

i.e. the Semaphore Shuffle Time is the delay between the attempted
acquisition of a task's semaphore and the reactivation of the task blocked
on a semaphore wait.

 = +

i.e. the Deadlock Break Time is the time the executive takes to resolve
the conflict occurring when a higher-priority task pre-empts a lower-
priority task that holds a resource needed by the higher priority task.

i.e. the Intertask Message Latency is the time taken to transfer a non-zero
length message via pipes, queues, or stream files between tasks.

Weighting factors can be applied to construct an application specific
benchmark, e.g:

 Weighted Rhealstone =
n n n n n n

n n n n n n
1 2 3 4 5 6

1 1 2 2 3 3 4 4 5 5 6 6

+ + + + +
+ + + + +t t t t t t

SEMAPHORE
SHUFFLE
TIME

∆ 1 ∆ 2

TASK 1
TASK 2 t :

4
= semaphore request

= semaphore free

∆ 1 ∆ 2

TASK
1

TASK 2 DEADLOCK
BREAK
TIME

t :
5

= resource request

= resource free

∆ 1 ∆ 2

∆ 1 ∆ 2

TASK 3

?

Priorities:
 TASK3 > TASK2 > TASK1

TASK 1
INTERTASK
MESSAGE
LATENCY

t :
6

TASK 2

∆

RDCS 423 - Real-time Distributed Computer Systems rt/p16

The Hartstone Benchmark

The Hartstone uses a variant of the Whetstone benchmark for the basic
computational load imposed on the processor. The benchmark suite is
written in the Ada language and is designed to measure the following:

• performance of the Ada runtime environment
• efficiency of handling multiple real-time tasks

The test set is made up of five series of tests; the first is the periodic
harmonic (PH) test:

• Consists of five independent periodic Ada tasks which have an
assigned frequency, priority and workload. Task frequencies are made
harmonic, i.e. are an integral multiple of the frequency of the lowest
frequency task. The main loop of each task executes a Kilo-Whetstone.

• The task dependency diagram:

A Hartstone task must execute a specified number of Kilo-Whetstones in
its scheduled period, and the rate at which the task performs this is
measured in Kilo-Whetstone Instructions per second (KWIPS). The
workload rate is then the per-period work load multiplied by the task
frequency.

RDCS 423 - Real-time Distributed Computer Systems rt/p17

The task must also satisfy a deadline for completion of the assumed
workload - which is the next scheduled activation for the task. Failure to
complete on time results in a missed deadline being recorded for that task -
load shedding is used to skip deadlines and continue operation of the test.

Task priorities are static and are assigned at initialisation of the test using
a rate-monotonic scheduling discipline (i.e. high frequency tasks are
assigned a higher priority than low frequency tasks).

Hartstone PH Tests: A baseline test is performed to obtain an
acceptable task workload utilization without any missed deadlines.
Utilization in the baseline test can be compared with 100% utilisation in
the calibration test done with no tasking and only the computational load
applied, e.g. consider a baseline test:

The first test adjusts the frequency of the highest frequency task (task 5)
for each successive cycle of the test until some task misses a deadline.
The test continues with this task frequency until a specified number of
deadline misses or skips is recorded, e.g. consider the results of a typical
first experiment:

RDCS 423 - Real-time Distributed Computer Systems rt/p18

There are three additional "experiments" which are run in the PH test:

1. All task frequencies are harmonically scaled upwards (by 10% on

each new test cycle).

2. All task workloads are scaled upwards (by 1 KW per period on each
new test cycle).

3. New tasks with the same frequency and workload as task 3 are added
on each new test cycle.

The purpose of each additional experiment is to determine the
computational load and associated overhead for periodic tasks that
exceeds the capability of the run-time environment and forces deadlines
to be missed.

