
RDCS 423 - Real-time Distributed Computer Systems pm/p1

Process A Process B

REAL-TIME DISTRIBUTED SYSTEMS
PERFORMANCE MODELLING

Performance analysis is of considerable importance for real-time
systems because of the presence of time-constraints on various system
actions and responses. It allows the detection of potential problems in
advance and can be used to explore alternative software designs and
hardware configurations.

Types of Performance Models

• Regression Models - an

empirical technique that
takes statistical data on
system performance and
applies a curve fitting
approach to the data (e.g.
least squares). The
limitation of the approach is that a static model is developed that
treats the system structure and behaviour as a "black-box" which
gives little insight into design alternatives.

• Queuing Models - these models

usually involve a number of
simplifying assumptions to
make the model amenable to
analysis:

a) a "memory-less" property in the probability of requests →

this allows the interarrival time distribution to be modelled
as exponential. Thus the smallest interarrival time (zero)
has the highest probability. This situation is almost never
found in real computational environments.

b) generally only steady-state performance can be analysed.

Process
Characteristic

Process

RDCS 423 - Real-time Distributed Computer Systems pm/p2

The main application of queuing type models is as high-level
abstract models to obtain an overall view of whether the system
can meet performance goals → other techniques are needed for
more detail.

• Simulation Models - this is a dynamic model which models both

the real-world system and the software design → it uses an
algorithmic abstraction of the system structure and behaviour.
Such a model is a discrete event model, i.e. simulation is time
based but the simulation can "skip" over time intervals between
system events.

The problem with this modelling approach is finding the right
level of abstraction that captures just enough of the system
behaviour to be realistic but not too much to be too costly to
implement → trade-off between model "realism" and simulation
time and cost.

• Petri Net Models - finite state machines are sequential models so
they can only be used to indirectly model concurrent systems.
Petri nets can model concurrent system directly and be augmented
with time information to model real-time systems. Petri Nets also
support powerful analysis capabilities and can be combined with
stochastic models to analyse steady-state properties of the system.

• Real-time Scheduling & Event Sequence Models - where the

system has been designed based on some systematic assignment
of task priorities based on scheduling theory to give the highest
possible resistance to variability in performance under different
loading conditions. A simplified model of the task architecture
and scheduling environment can be used to support an analysis of
performance for critical events sequences through the system.

The last mentioned approach is the one that has achieved the highest
impact with industry, with the other approaches being more commonly
used for safety-critical real-time distributed systems.

RDCS 423 - Real-time Distributed Computer Systems pm/p3

Real-Time Scheduling Theory

Where hard deadlines are specified in a real-time system it is
necessary to specify the priorities of the concurrent tasks in the
system. This approach assumes that priority pre-emption scheduling is
supported by the operating system (i.e. the highest priority task
executes when it is ready).

The approach has been applied to progressively more complicated
scheduling situations, e.g. independent periodic tasks, mixture of
periodic and aperiodic tasks, scheduling with task synchronization
(e.g. scheduling for Ada tasks).

Scheduling Periodic Tasks

A basic rate monotonic approach is used, i.e. where each task is
assigned a fixed priority based on an inverse relationship with the
period of execution of the task.

• Given a periodic task with period T and an execution time C, the
CPU utilization U = C/T.

• A task is said to be schedulable if all deadlines can be met (i.e.
execution is completed before its period expires).

Utilization Bound Theorem [Liu & Layland, 1973]:

A set of n independent periodic tasks will always meet their deadlines
provided the sum of the C/T ratios is below an upper bound of overall
CPU utilization, i.e:

C
T

C
T

C
T

n U nn

n

n1

1

2

2

12 1+ + + ≤ − =Λ () ()/

This applies for all task ti "phasings" with execution times Ci and
periods Ti.

As n → ∞ the upper bound U(n) → ln 2 = 0.69.

RDCS 423 - Real-time Distributed Computer Systems pm/p4

Derivation of Rate Monotonic Scheduling Bound

• Apply a Rate Monotonic scheduling policy for two tasks τ1 and τ2:
- if T2 > T1 then task τ1 priority is set higher than task τ2 priority

• Consider two cases:

1. All requests for τ1 are completed before the second τ2 request
(above diagram)
- The number of requests for τ1 during period T2 is  12 /TT
- τ1 consumes C1  12 /TT of the CPU time within T2's period
- The largest possible C2 remaining is T2 - C1  12 /TT
 and the CPU utilisation is:

 U = C1/T1 + C2/T2 = C1/T1 + 1 - C1/T2  12 /TT

2. A request for τ1 overlaps the second τ2 request (see diagram)

- Now the  12 /TT th request of τ1 overlaps the second τ2 request
- After these requests have been satisfied the largest possible C2
 remaining is (T1 - C1)  12 /TT and the CPU utilisation is:

U = C1/T1 + C2/T2 = C1/T1 + (T1 - C1)/T2  12 /TT

T1

T2
C1

C2

τ1

τ2

T1

T2 C1

C2

τ1

τ2

RDCS 423 - Real-time Distributed Computer Systems pm/p5

⇒ The two utilisations are:

1. U = C1/T1 + 1 - C1/T2  12 /TT
2. U = C1/T1 + (T1 - C1)/T2  12 /TT

The minimum value U occurs at the boundary of the two cases, i.e.
where:

C1/T1 + 1 - C1/T2  12 /TT = C1/T1 + (T1 - C1)/T2  12 /TT

i.e. C1 = T2 - T1  12 /TT

The utilisation at this point is:
U = 1 - T1/T2 ( 12 /TT - T2/T1) (T2/T1 -  12 /TT)

Letting f = T2/T1 -  12 /TT we have:
 U = 1- f(1-f)/( 12 /TT + f)

Now the minimum U occurs at the smallest possible value of  12 /TT
and since T2 > T1, this is 1. Thus we can rewrite U:

 U = 1- f(1-f)/(1 + f) = (1 + f 2)/(1+ f)

Minimizing U over f, gives

dU/df = (f 2+ 2f -1)/(1+ f)2 i.e. (1 + 2f + f 2) = 0 ⇒ f = 21/2 -1

Hence U = 2(21/2 -1) ≈ 0.83.

Thus the least upper bound CPU utilisation for two tasks with rate
monotonic scheduling is 83%:
• This occurs where T2/T1 -  12 /TT = 0.41, i.e. the period of T2 is

about 41% greater than T1.
• Corresponds to a τ1 execution period that is about 41% of T1 and a

τ2 execution period that is T1-C1. Note with f = 0 then U = 1 as
expected.

Generalize for n tasks: U(n) = n(21/n -1).

U

C1

1
2

RDCS 423 - Real-time Distributed Computer Systems pm/p6

Note carefully that the Utilization Bound Theorem is a worst-case
approximation and on less conservative criteria:

• U(n) = 0.88 for a randomly chosen group of tasks (i.e. permits
some "beneficial" phasings as well) [Lehoczy, 1989].

• U(n) is even higher where the tasks have harmonic periods (i.e.
have periods that are multiples of each other).

The advantage of the rate monotonic algorithm is that it is very stable
in the presence of transient overload → all the highest priority tasks
(which by definition have the shortest period) will still meet their
deadlines while lower priority tasks will occasionally miss deadlines
as processor load increases.

Example:

 Task t1: C1 = 20 ms; T1 = 100 ms → U1 = 0.2
 Task t2: C2 = 30 ms; T2 = 150 ms → U2 = 0.2
 Task t3: C3 = 60 ms; T3 = 200 ms → U3 = 0.3

Assume that the context switch overhead is included in the CPU times.
The upper bound from the Utilization Bound Theorem is:
 U(3) = 3(21/3-1) = 0.78
which is greater than the total utilization of these tasks,
i.e. Utotal = 0.7 → all three tasks can meet their deadlines.

Suppose that t3's performance changes to:
 Task t3: C3 = 90 ms; T3 = 200 ms → U3 = 0.45

Now, Utotal = 0.85 which is greater than the bound → the tasks fail to
meet their deadlines. The first two tasks can be checked in the same
way, e.g. Utotal = 0.4 and the upper bound becomes:
 U(2) = 2(21/2-1) = 0.828

which is greater than the total utilization of these tasks → at least the
first two tasks can meet their deadlines.

RDCS 423 - Real-time Distributed Computer Systems pm/p7

Completion Time Theorem [Lehoczy, 1989]:

The Utilization Bound Theorem is very pessimistic, and a more exact
schedulability criterion can also be checked. The worst-case
assumption is made that all periodic tasks are ready to execute at the
same time.

It has been shown before [Liu, 1973] that provided a task completes
execution before its first period, then it will never miss a deadline.
Thus this theorem checks if all tasks can complete execution before
the end of their respective first periods.

A set of n independent periodic tasks scheduled by a rate monotonic
algorithm will always meet their deadlines, for all task phasings, iff:

 ∀ ≤ ≤





















≤

∈ =
∑i i n C

pT
pT
Tk p Ri

j
k

k

jj

i
, ,1 1 1

1
min

(,)
 . . . (1)

where Cj is the execution time, and Tj is the period, of task tj,
and where  R k p k i p T Ti i k= ≤ ≤ ={() }, , , , /1 1 Λ

Note that for convenience we can rewrite eqn. (1) to:

 ∀ ≤ ≤ ∀ ∈








 ≤

=
∑i i n k p R C

pT
T

pTi j
k

jj

i

k, , ,1
1

(,) . . . (2)

so that one of these inequalities must be met for each i.

Example

 Task t1: C1 = 20 ms; T1 = 100 ms → U1 = 0.2
 Task t2: C2 = 30 ms; T2 = 150 ms → U2 = 0.2
 Task t3: C3 = 90 ms; T3 = 200 ms → U3 = 0.45

The worst-case scenario is with all three tasks ready to execute at the
same time. Using rate monotonic scheduling t1 executes first, followed
by t2 then t3.

RDCS 423 - Real-time Distributed Computer Systems pm/p8

Note that task ti will execute once for a CPU time of Ci during a period
Ti and higher priority tasks will execute more often and may pre-empt
task ti. Thus it is necessary to consider the CPU time used by all
higher priority tasks.

The ends of the first periods of each of the tasks, Ti, are referred to as
scheduling points.

At time T1, task t1 must be rescheduled, and being of shorter period
(hence higher priority), it pre-empts task t3.

At time T2, task t2's scheduling point, task t2 pre-empts t3 again.
Finally t2 completes and allows t3 to be rescheduled to complete its 90
msec execution time before its deadline, and before t1 needs to be
rescheduled.

All three tasks complete execution before the end of their respective
first periods → all can meet their deadlines.

Note that a total of 190 msec of CPU time is used up over the first 200
msec → utilization of 0.95. After an elapsed time of the least common
multiple of the three periods, i.e. 600 msec, the utilization averages out
to 0.85.

time 0 20 40 60 80 100 120 100 140 160 180 200

task t 1

task t 2

task t 3

20 20

30 30

50 30 10

T 1 T 2 T 3

RDCS 423 - Real-time Distributed Computer Systems pm/p9

Applying the Completion Time Theorem, equation (2) to this example:

• ti is the lowest priority task to be checked and tk is the task with a
scheduling point to be checked against it. Each value of p
represents the scheduling points of task tk to be checked.

• Check from task t3 against t1’s SP’s, i.e. i = 3 and k = 1
 → p = 1, . . . ,  T Ti k/ = 1, . . . ,  200 100/ = 1, 2.
 i.e. Ri = (k,p) = (1,1), (1,2)

for (,) ()
() () ()

()k p C T
T

C T
T

C T
T

T= ⇒








 +









 +









 ≤11

1 1 1
11

1

1
2

1

2
3

1

3
1,

 ⇒ 





+ 





+ 





≤C C C T1 2 3 1

1 100
100

1 100
150

1 100
200

() () ()

 ⇒ + + ≤C C C T1 2 3 1 ⇒ + + ≤20 30 90 100?

 and this inequality is not met.

for (,) ()
() () ()

()k p C T
T

C T
T

C T
T

T= ⇒








 +









 +









 ≤1 2

2 2 2
21

1

1
2

1

2
3

1

3
1,

 ⇒ 





+ 





+ 





≤C C C T1 2 3 1

2 100
100

2 100
150

2 100
200

2() () ()

 ⇒ + + ≤2 2 21 2 3 1C C C T ⇒ + + ≤40 60 90 200

 and this inequality is met.

• Check from task t3 against t2’s SP’s, i.e. i = 3 and k = 2
 → p = 1, . . . ,  T Ti k/ = 1, . . . ,  200 150/ = 1.

 i.e. Ri = (k,p) = (2,1).

for (,) ()
() () ()

()k p C T
T

C T
T

C T
T

T= ⇒








 +









 +









 ≤2 1

1 1 1
11

2

1
2

2

2
3

2

3
2,

RDCS 423 - Real-time Distributed Computer Systems pm/p10

 ⇒ 





+ 





+ 





≤C C C T1 2 3 2

1 150
100

1 150
150

1 150
200

() () ()

 ⇒ + + ≤2 1 2 3 2C C C T ⇒ + + ≤40 30 90 150 ?

 and this inequality is not met.

• Check from task t3 against t3’s SP’s, i.e. i = 3 and k = 3
 → p = 1, . . . ,  T Ti k/ = 1, . . . ,  200/200 = 1.

 i.e. Ri = (k,p) = (3,1).

3
3

3
3

2

3
2

1

3
1)1()1()1()1()1,3() ,(for T

T
TC

T
TC

T
TCpk ≤








+








+








⇒=

 3321 200
002)1(

150
002)1(

100
002)1(TCCC ≤




+




+





⇒

 2321 22 TCCC ≤++⇒ 200906040 ≤++⇒ ?

 and this inequality is also met.

Note from eqn. (2) that only one inequality must be met for task 3.

• Check from task t2 against t1’s SP’s, i.e. i = 2 and k = 1
 → p = 1, . . . ,  T Ti k/ = 1, . . . ,  150 100/ = 1.

 i.e. Ri = (k,p) = (1,1).

for (,) ()
() ()

()k p C T
T

C T
T

T= ⇒








 +









 ≤11

1 1
11

1

1
2

1

2
1,

 ⇒ 





+ 





≤C C T1 2 1

100
100

100
150

 ⇒ + ≤C C T1 2 1 ⇒ + ≤20 30 100 ?

 and this inequality is met.

• Check from task t2 against t2’s SP’s, i.e. i = 2 and k = 2
 → p = 1, . . . ,  T Ti k/ = 1, . . . ,  150/150 = 1.

 i.e. Ri = (k,p) = (1,1).

RDCS 423 - Real-time Distributed Computer Systems pm/p11

2
2

2
2

1

2
1)1()1()1()1,1() ,(for T

T
TC

T
TCpk ≤








+








⇒=

 221 150
501

100
501 TCC ≤




+





⇒

 2212 TCC ≤+⇒ 1503040 ≤+⇒ ?

 and this inequality is met.

Note from eqn. (2) that only one inequality must be met for task 2.

• Check from task t1 against t1’s SP’s, i.e. i = 1 and k = 1
 → p = 1, . . . ,  T Ti k/ = 1, . . . ,  100 100/ = 1.

 i.e. Ri = (k,p) = (1,1).

for (,) ()
()

()k p C T
T

T= ⇒








 ≤11

1
11

1

1
1,

 ⇒ 





≤C T1 1

100
100

 ⇒ ≤C T1 1 ⇒ ≤20 100 ?

 and this inequality is met.

Note from eqn. (2) that only one inequality must be met for task 1.

Thus in this example the inequalities are satisfied for all values of
1 ≤ i ≤ n = 3, so that as all three tasks meet at least one of their
scheduling point deadlines, then the tasks are schedulable.

RDCS 423 - Real-time Distributed Computer Systems pm/p12

Scheduling Periodic and Aperiodic Tasks

Rate monotonic theory can be extended to accommodate aperiodic
(asynchronous) tasks, i.e. tasks that "arrive" randomly within some period
Ta (which is the minimum interarrival time of the event which activates
the task).

If Ca is the CPU time consumed by the aperiodic task, then the scheduler
can effectively reserve a "ticket" of value Ca with period Ta. If the task is
not activated during the Ta period, then the ticket is discarded → the
worst-case CPU utilization of the aperiodic task is Ca/Ta.

Thus aperiodic tasks can be accommodated in the theory by assigning
appropriate priority levels based on their worst-case minimum interarrival
time.

Scheduling with Task Synchronization

Task synchronization is required when a task enters a critical section and
other tasks must be stopped from entering it also. The problem can arise
that a lower priority task enters the critical section before a higher priority
task (which is then held up while the lower priority task executes). This
situation is referred to as priority inversion.

This problem can become an unbounded priority inversion where the
lower priority process (while in the critical section) becomes blocked on
another (or the same) higher priority process.

A simple solution to the problem is to prevent tasks from being pre-
empted while in critical sections → this is fine where critical sections are
short, but still not ideal because higher priority tasks have to wait.

RDCS 423 - Real-time Distributed Computer Systems pm/p13

The priority ceiling protocol:

One mechanism that avoids mutual deadlock and provides a bounded
priority inversion is the priority ceiling protocol.

The basic concept is that only one lower priority task is able to block a
higher priority task at a time - consider the simplest case with only one
critical section to illustrate.

All tasks must have adjustable priority levels. Consider that a low
priority task A is in its critical section, and all other higher priority tasks
are blocked because they want to use the same resource. The priority of
task A is increased to that of the highest priority task being blocked by it
→ this will speed up the execution of task A so that the blocking time for
the higher priority tasks is minimized:

For a binary semaphore S that protects a shared resource, it has a
priority ceiling P (the highest priority task that is allowed to acquire it).
Thus a low priority task that acquires semaphore S can have its priority
raised to a maximum of P.

Potentially deadlock can also occur here, i.e. where two tasks each need
to acquire two identical resources (but in a different sequence):

The priority ceiling protocol handles this situation also, i.e. if
semaphore S1 priority is P1 then task A priority is raised to P1 which is
higher than task B so that task B cannot acquire S2 and task A is able to
acquire S2 next.

increasing
priority

shared
resource
semaphore

S
P

1

1 2

2 task B task A

S 1

S 2

task A
other tasks

RDCS 423 - Real-time Distributed Computer Systems pm/p14

Generalized Real-Time Scheduling Theory

Of course, in practice, tasks may not be able to execute at their
assigned rate monotonic priorities → need to extend the theory to
accommodate these cases.

Where an aperiodic task occurs, the conventional rate monotonic
approach is to treat it as a task with period set to the worst case
interarrival time. Where the aperiodic task is interrupt driven, it may
be the case that even though it occurs infrequently (so it has a high
interarrival time and hence a low priority) we may want to have a fast
response → it needs a high priority.

Thus we need to distinguish a task's rate monotonic priority (which is
based entirely on the task's period) from an actual priority which may
be based on the importance of the task. This leads to a form of rate
monotonic priority inversion - e.g. we could have that task A (with
period 25 msec) has a higher rate monotonic priority than an interrupt
driven task B (with worst case interarrival period 50 msec), but task
B's actual priority is higher because we want it to pre-empt the
periodic task.

The extension to basic rate monotonic scheduling theory includes:
• the blocking effect of lower priority tasks.
• pre-emption by higher priority tasks that do not observe rate

monotonic priorities.

Consider a task ti with period Ti during which it consumes Ci units of
CPU time. The extensions to the existing theorems (Utilization Bound
and Completion Time) explicitly check that each task ti can meet its
first deadline:

1. Pre-emption time by higher priority tasks with periods less

than that of ti: Such tasks can pre-empt task ti many times, so let
this set of tasks be Hn. If Cj is the CPU time and Tj is the period
for task tj (and note that Tj < Ti). The utilization of a task tj in the
set Hn is given by Cj/Tj.

RDCS 423 - Real-time Distributed Computer Systems pm/p15

2. Execution time for task ti: Task ti executes once during period
Ti and consumes Ci units of CPU time.

3. Pre-emption by higher priority tasks with longer periods:

These tasks have non-rate monotonic priorities, and they can only
pre-empt task ti once, as they have longer periods than ti. Call this
set of tasks HI and let the time used by a task in this set be Ck.
The worst-case utilization of a task tk in the HI set is given by
Ck/Ti.

4. Blocking time by lower priority tasks: These tasks can only

execute once as they have longer periods. Blocking delays can be
analysed on an individual basis for each task ti to find the worst
case blocking situation. If Bi is the worst case blocking time for a
given task, then the blocking utilization for the period Ti is Bi/Ti.

For any task ti the standard Utilization Bound and Completion Time
theorems accommodate items 1 and 2 above. The Generalized
Utilization Bound Theorem accommodates items 3 and 4 above:

 U
C
T T

C C Bi
j

jj H i
i k

k H
i

n I

= +∑ + ∑ +










∈ ∈
 1

where Ui is the utilization bound during a period Ti for task ti. The four
terms in the utilization expression arise from the respective terms
identified above.

The utilization for any task Ui can be determined and compared
against the worst case bound U(n). This bound must be met by all
tasks since showing that a given task meets its bound does not now
guarantee that all higher priority tasks will meet their bounds.

Should the Utilization Bound test fail, a more precise test can be
applied, i.e. a generalized Completion Time Theorem.

RDCS 423 - Real-time Distributed Computer Systems pm/p16

Example - application of Generalized Real-Time Scheduling Theory

We have four tasks - two periodic and two aperiodic:
• periodic task t1: C1 = 20 ms, T1 = 100 ms → U1 = 0.2
• aperiodic task t2: C2 = 15 ms, T2 = 150 ms → U2 = 0.1
• interrupt driven aperiodic task ta: Ca = 4 ms, Ta = 200 ms
 → Ua = 0.02
• periodic task t3: C3 = 30 ms, T3 = 300 ms → U3 = 0.1

Suppose t1, t2 and t3 all access the same data object, which is protected
by a semaphore s. Context switch time is assumed to be included in the
indicated CPU times.

Using rate monotonic priority assignment, the priorities would be t1, t2,
ta, t3. Because a fast response is required to interrupts the priority of ta is
raised to be the highest.

The overall CPU utilization is 0.42 which is less than the utilization
bound U(4) = 4(21/4-1) = 0.76. Because of the non-rate monotonic
priority assignment it is necessary to consider each task individually:

• Consider task ta - highest priority with Ua = 0.02 → no trouble

meeting its deadline.

• Consider task t1 - apply the Generalized Utilization Bound Theorem
a) Pre-emption by high-priority tasks with periods less than T1

(there are none here).
b) Execution utilization U1 = 0.2.
c) Pre-emption by high-priority tasks with longer periods. Task

ta falls into this category → utilization in the period of the
task is Ca/T1 = 4 ms/100 ms = 0.04.

d) Blocking time by lower priority tasks. Both t2 and t3 can
potentially block t1 → assuming the priority ceiling algorithm
is being used, at most only one task can block t1, so take the
worst-case of t3 (since it has the longer execution time), i.e.
blocking utilization during the period of the task is B3/T1 = 30
ms/100 ms = 0.3.

RDCS 423 - Real-time Distributed Computer Systems pm/p17

From the Generalized Utilization Bound Theorem we have:
 Worst Case Utilization =
 Pre-emption utilization (periods less than task period)
 + Execution utilization
 + Pre-emption utilization (periods greater than task period)
 + Blocking utilization

For task t1, the worst case utilization = 0.2 + 0.04 + 0.3 = 0.54
which is less than the worst case utilization bound = 0.76.
 → task t1 will meet it's deadline.

• Consider task t2 - apply the Generalized Utilization Bound Theorem

e) Pre-emption by high-priority tasks with periods less than T2.
Task t1 has a period less than T2, so its pre-emption utilization
during the period is U1 = 0.2.

f) Execution utilization U2 = 0.1.
g) Pre-emption by high-priority tasks with longer periods. Task

ta falls into this category → utilization in the period of the
task is Ca/T2 = 4 ms/150 ms = 0.03.

h) Blocking time by lower priority tasks. Task t3 can potentially
block t2 → again assuming the priority ceiling algorithm is
being used, at most only one task can block t2, so take the
worst-case of t3, i.e. blocking utilization during the period of
the task is B3/T2 = 30 ms/150 ms = 0.2.

For task t2, the worst case utilization = 0.2 + 0.1+ 0.03 + 0.2 = 0.53
which is less than the worst case utilization bound = 0.76.
 → task t2 will meet it's deadline.

• Consider task t3 - apply the Generalized Utilization Bound Theorem

i) Pre-emption by high-priority tasks with periods less than T3.
Tasks t1, t2 and ta have periods less than T3, so its pre-emption
utilization during the period is: U1 + U2 +
Ua =0.2 +0.1 + 0.02 = 0.32.

j) Execution utilization U3 = 0.1.
k) Pre-emption by high-priority tasks with longer periods. There

are no tasks in this category.

RDCS 423 - Real-time Distributed Computer Systems pm/p18

l) Blocking time by lower priority tasks. There are no lower
priority tasks.

For task t3, the worst case utilization = 0.32 + 0.1 = 0.42
which is less than the worst case utilization bound = 0.76.
 → task t3 will meet it's deadline.

Thus all four tasks will meet their deadlines.

Use of Real-Time Scheduling Theory in the Design Phase

In the design phase it is usual to be more conservative and apply the
worst case Utilization Bound Theorem (i.e. for an infinite number of
tasks, or 0.69). If this worst case bound cannot be achieved then
alternative solutions should be attempted.

It is acceptable to have utilizations above 0.69 provided all utilizations
above 0.69 are to due to lower priority soft real-time tasks (or even non-
real-time tasks) → missed deadlines by these tasks are not serious.

Priority assignment is based on the following guidelines:

1. Assign rate monotonic priorities based on worst case task periods.
2. Interrupt driven tasks are assigned the highest priorities.
3. Tasks having the same period (hence the same rate monotonic

priority) are given slightly different priorities based on their
application importance.

Performance Analysis using Event Sequence Analysis and Real-
Time Scheduling Theory

Based on the requirements phase of the project, the system response
times are specified. After the task structuring phase, preliminary time
budgets can be allocated to tasks, and an event sequence analysis applied
to determine the sequence of tasks that need to be executed to service
any external event.

RDCS 423 - Real-time Distributed Computer Systems pm/p19

Steps in the process:

1. Select an external event.

2. Find the I/O task activated by the event and estimate the CPU time
for the I/O task (any uncertainties are accommodated via a worst
case upper bound).

3. Identify all tasks activated by this task and estimate their CPU time.

4. Identify all I/O tasks that generate the system's response to that
event and estimate the CPU times.

5. Include CPU overhead time, i.e. context switching overhead,
interrupt handling overhead, intertask communication, and
synchronization overhead.

6. Sum the CPU times for all event sequence tasks and add the CPU
overhead.

7. Compare the total CPU time against the specified response time to
the external event.

Note that CPU utilization estimation may require the tracing of multiple
paths through each task → then estimate the CPU time for each path.

The frequency of activation of the various paths in the task need to be
estimated and then multiplied by the path execution times
→ sum all task CPU times as before.

To apply Real-Time Scheduling Theory it is only necessary to compare
the event sequence CPU times against the deadlines rather than
individual task CPU times as before:

1. Locate all tasks in the event sequence with the same priority →
these tasks can then be considered as one equivalent task from a
scheduling viewpoint (and has a CPU time equal to the sum of the
task CPU times plus all overheads).

2. The worst case interarrival time of the external event that initiates
the event sequence is then made the period of the equivalent task.

RDCS 423 - Real-time Distributed Computer Systems pm/p20

3. The Real-Time Scheduling Theorems are applied to determine if the
equivalent task can meet its deadlines, i.e. consider pre-emption by
higher priority tasks, blocking by lower priority tasks, and execution
time of this task.

Note this approach is a simplification, i.e. in practice one task may
appear in a number of different event sequences or executing the
equivalent task at that priority would stop other tasks meeting deadlines.

To overcome this limitation, the tasks in the event sequence need to be
analysed separately and assigned different priorities. Then the tasks
within the event sequence also need to be checked against the deadlines.

Example - event sequence analysis

Consider the Cruise Control subsystem for a particular event sequence
specified for a Cruise Control Interrupt:

 [Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems pm/p21

Assumptions:

• The priority of all Monitoring subsystem tasks and the Calibration
task is lower than any of the tasks in the event sequence.

• The Cruise Control subsystem is in the Initial state.

Suppose a performance requirement is that the system must respond to
the driver's engaging the cruise control in the ACCEL position within
250 msec. The sequence of internal events is shown above (C1-9) and
they can be listed with the CPU time Ci required for each event i:

1. Cruise control interrupt (C1)
2. Cruise control interface reads the cruise control lever (C2)
3. Cruise control interface sends a cruise control request message to

Cruise Control (C3)
4. Cruise Control executes its statechart with a state change from Initial

to Accelerating (C4)
5. Cruise Control sends an increase speed command to task Speed

Adjustment (C5)
6. Speed Adjustment executes the command and computes the throttle

value (C6)
7. Speed Adjustment sends a throttle value message to the Throttle

Interface task (C7)
8. Throttle Interface computes the new Throttle Position (C8)
9. Throttle Interface outputs to the throttle.

As four tasks are involved in the event sequence → there is a minimum
delay of 4*Cx where Cx is the task context switch time.

The Total CPU time required to support this event sequence is:
 Ce = C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + 4*Cx

and if the communication overhead Cm is the same in all cases, we have:
 Ce = C1 + C2 + C4 + C6 + C8 + 3*Cm + 4*Cx

It is necessary to include the execution of other tasks that can occur
during this event sequence, i.e. assume:

RDCS 423 - Real-time Distributed Computer Systems pm/p22

• Auto Sensors (C10) is periodically activated every 100 msec → it
could execute 3 times in the 250 msec period.

• Shaft Interface (C11) is activated on every shaft rotation, so at 6000
rpm → once every 10 msec → 25 times in this period.

• Distance and Speed (C12) is periodically activated every 250 msec
→ executes once in the period.

Every time a task executes that is not in the event sequence there could
be two context switches.

 Thus the total CPU time for these additional three tasks is:

 Ca = 3*(C10+2*Cx) + 25*(C11 + 2*Cx) + (C12 + 2*Cx)

 and the total CPU time is then:

 Ct = Ce + Ca

Estimates are required for all the timing parameters, these are derived
from the TBSs for all tasks involved in the event sequence and any other
overhead tasks, e.g:

 C1 = 1 msec, C2 = 4 msec, C4 = 6 msec, C6 = 14 msec,
 C8 = 5 msec, C10 = 5 msec, C11 = 1 msec, C12 = 10 msec,
 Cm = 1 msec, Cx = 0.5 msec

From these values we have:

 Ce = 35 msec, Ca = 79 msec → Ct = 114 msec < 250 msec

Note that perturbations can now be applied to the task execution times,
the context switch times and the communication times to explore how
close to specification the response time is expected to be, e.g:

 Cx = 0.5 msec → 1 msec so Ct = 114 msec → 145 msec

RDCS 423 - Real-time Distributed Computer Systems pm/p23

Real-Time Scheduling Theory based Performance Analysis

The approach is to consider a steady state situation involving only
periodic tasks, and then consider the driver-imposed aperiodic demands
on the system.

The worst-case steady-state situation is examined first, i.e. at maximum
CPU demand with the car at maximum shaft revolution rate. For the
periodic tasks, let the period be Ti, the CPU time Ci, and each task's CPU
utilization is Ui = Ci/Ti. The two context switch times for each task are
included in the CPU time for each task.

Consider each periodic task:

1. Shaft Interface: assume periodic (actually aperiodic) at worst-case
6000 rpm → T1 = 10 msec, C1 = 1 + 2*0.5 = 2 msec.

2. Auto Sensors: T2 = 100 msec, C2 = 5 + 2*0.5 = 6 msec.

3. Distance and Speed: T3 = 250 msec, C3 = 10 + 2*0.5 = 11 msec.

4. Calibration: T4 = 500 msec, C4 = 4 + 2*0.5 = 5 msec.

5. Speed Adjustment: once activated under automated control,
 T5 = 250 msec, C5 = 14 + 2*0.5 = 15 msec.

6. Throttle Interface: once activated under automated control,
 T6 = 100 msec, C6 = 5 + 2*0.5 = 6 msec.

7. Trip Reset Buttons Interface: T7 = 500 msec, C7 = 4 + 2*0.5 = 5
msec.

8. Trip Average Timer: executes relatively infrequently,
 T8 = 1 sec, C8 = 20 msec (but not time critical).

9. Maintenance Reset Button Interface: executes very infrequently,
 say T9 = 1 sec, C9 = 6 msec (but not time critical).

10. Maintenance Timer: executes very infrequently,
 say T9 = 2 sec, C9 = 15 msec (but not time critical).

RDCS 423 - Real-time Distributed Computer Systems pm/p24

The rate monotonic priority assignment is based on an inverse relationship
with task period, so the priority assignment is to assign the highest priority
to tasks of shortest period.

Note that there are three cases where tasks have the same period:

• Throttle Interface and Auto Sensors have a period of 100 msec → as
Auto Sensors is always active, while Throttle Interface is only active
under automated vehicle control and it receives an input from Auto
Sensors, Auto Sensors is given the higher priority.

• Speed and Distance and Speed Adjustment have a period of 250
msec → as Speed and Distance computes current speed that is used
by Speed Adjustment (if active) then it is given higher priority.

• Calibration and Trip Reset Buttons Interface have a period of 500
msec → as Calibration is associated with the Cruise Control
subsystem (rather than the Maintenance Monitoring subsystem) it is
given higher priority.

The utilizations Ui = Ci/Ti are all computed:

• Shaft Interface - U1 = 2 ms/10 ms = 0.2
• Auto Sensors - U2 = 6 ms/100 ms = 0.06
• Throttle Interface - U3 = 6 ms/100 ms = 0.06
• Distance and Speed - U4 = 11 ms/250 ms = 0.04
• Speed Adjustment - U5 = 15 ms/250 ms = 0.06
• Calibration U6 = 5 ms/500 ms = 0.01
• Trip Reset Buttons Interface - U7 = 5 ms/500 ms = 0.01
• Trip Averages Timer - U8 = 20 ms/1000 ms = 0.02
• Maintenance Reset Buttons Interface - U9 = 6 ms/1000 ms = 0.01
• Maintenance Timer - U10 = 15 ms/2000 ms = 0.01

Thus the total utilization = 0.48 < 0.69 (the worst-case upper bound), so
that by the rate monotonic Utilization Bound Theorem, all tasks should
meet their deadlines. It is assumed that any data access time to shared
data stores is negligible.

RDCS 423 - Real-time Distributed Computer Systems pm/p25

Combined Real-Time Scheduling Theory and Event Sequence based
Performance Analysis

Define an Equivalent Aperiodic Task: consider the event sequence
when the driver initiates an external event, e.g. via the cruise control
lever or the brake - tasks in an event sequence can be replaced by a
single aperiodic task which represents the additional CPU load.

For a cruise control lever external event, the tasks required to be executed
are Cruise Control Lever Interface, Cruise Control, Speed Adjustment
Control, and Throttle Interface → the required CPU time is Ce. The
combined four tasks can be referred to as an (aperiodic) event sequence
task since for this particular event sequence, these tasks must execute
sequentially with associated communications and task switch overhead.

From RT Scheduling Theory, an aperiodic task can be treated as a
periodic task with period given by the minimum interarrival time of
aperiodic requests, e.g. in this example the desired response time to the
driver's inputs is 250 msec → also the worst-case period (in practice it
will be much greater than this).

Note that two other tasks (Speed Adjustment and Distance and Speed)
have the same period → give the aperiodic task the higher priority of
the tasks with the same period (e.g. priority level 4). From earlier we
have Ce = 35 msec and Te = 250 msec (and e = 4 here), so reassigning
the task priorities gives the utilizations:

• Shaft Interface - U1 = 2 ms/10 ms = 0.2
• Auto Sensors - U2 = 6 ms/100 ms = 0.06
• Throttle Interface - U3 = 6 ms/100 ms = 0.06
• Event Sequence Task - U4 = 35 ms/250 ms = 0.14
• Distance and Speed - U5 = 11 ms/250 ms = 0.04
• Speed Adjustment - U6 = 15 ms/250 ms = 0.06
• Calibration - U7 = 5 ms/500 ms = 0.01
• Trip Reset Button Interface - U8 = 5 ms/500 ms = 0.01
• Compute Average Mileage - U9 = 20 ms/1000 ms = 0.02
• Maintenance Reset Button Interface - U10 = 6 ms/1000 ms = 0.01
• Maintenance Timer - U11 = 15 ms/2000 ms = 0.01

RDCS 423 - Real-time Distributed Computer Systems pm/p26

Thus the total utilization = 0.62 < 0.69, so that again by the rate
monotonic Utilization Bound Theorem, all tasks should still meet their
deadlines.

Activation of the brake can be treated in the same way, i.e. the event
sequence is now Auto Sensors, Cruise Control, Speed Adjustment, and
Throttle Interface and the estimated CPU time for the only task that is
different (Auto Sensors) is 5 msec which is the same as Cruise Control
Lever Interface → we have the same equivalent aperiodic task Ce.

The period for Monitor Auto Sensors was 100 msec (to ensure that brake
or engine inputs are not missed, but we assume that the maximum likely
rate of brake actuations is also 250 msec.

Given that both actuations are driver initiated, it is not realistic to
assume (even worst-case) that both brake and cruise control actuations
could both occur every 250 msec → assume either (but not both) events
can occur every 250 msec, so the total utilization of 0.62 is also obtained
for the brake actuation event sequence.

Incorporating Non-rate Monotonic Priorities

In the last example an assumption was made that all tasks can be
allocated their rate monotonic priorities:

• Thus the event sequence task is allocated priority 4 after Shaft
Interface, Auto Sensors and Throttle Interface → it could
potentially miss the Cruise Control Interrupt if it has to wait for the
other higher priority tasks to execute.

• Alternatively, if the event sequence task is allocated priority 1 (i.e. a
non-rate monotonic priority then it may force Shaft Interface to miss
its interrupt.

• A sensible choice would be to allow the Shaft Interface task to
retain priority 1 (given its 10 msec period) and the event sequence
task to be priority 2 (with period 250 msec) ahead of Auto Sensors
and Throttle Interface (both have period 100 msec)

RDCS 423 - Real-time Distributed Computer Systems pm/p27

With this priority assignment we have:

• Shaft Interface - U1 = 2 ms/10 ms = 0.2
• Event Sequence Task - U2 = 35 ms/250 ms = 0.14
• Auto Sensors - U3 = 6 ms/100 ms = 0.06
• Throttle Interface - U4 = 6 ms/100 ms = 0.06
• Distance and Speed - U5 = 11 ms/250 ms = 0.04
• Speed Adjustment - U6 = 15 ms/250 ms = 0.06
• Calibration - U7 = 5 ms/500 ms = 0.01
• Trip Reset Button Interface - U8 = 5 ms/500 ms = 0.01
• Compute Average Mileage - U9 = 20 ms/1000 ms = 0.02
• Maintenance Reset Button Interface - U10 = 6 ms/1000 ms = 0.01
• Maintenance Timer - U11 = 15 ms/2000 ms = 0.01

We then need to check each task explicitly again to ensure it meets its
deadline. The first two tasks in priority order (hence rate monotonic)
have a utilization of 0.34 → well under the bound. The next two tasks
in priority order must be analysed in a worst-case situation to show that
they do not miss their deadlines:

Consider a 100 msec period:

• Shaft Interface is scheduled 10 times → 20 msec used
• The four tasks in the event sequence are active once → 35 msec used
• The Auto Sensors and Throttle Interface task each consume 6 msec each

The total CPU time is 67 msec < 100 msec so all tasks meet their deadlines.

Note: the earlier rate monotonic analysis with an equivalent aperiodic task
gave a CPU utilization of 0.62 and bursts of activity can produce transient
loads which are much higher. For example, here we have an effective CPU
utilization (in a particular 100 msec period) of 0.67 and if we include the
next highest priority task, Distance and Speed, the CPU utilization
increases to 0.78.

Application of the RT scheduling algorithm guarantees that all tasks can
meet their deadlines regardless of sudden bursts of activity.

RDCS 423 - Real-time Distributed Computer Systems pm/p28

Analysis using Generalized Real-Time Scheduling Theory

We assume that we have rate-monotonic priority assignment policy with
the exception of the first Cruise Control Lever Interface task in the event
sequence which is given priority 2. The four tasks in the event sequence
need to be analysed separately over the period Te = 250 msec to
determine that all four tasks meet their deadlines:

1. Execution time for the task event sequence - the total execution time
for the four tasks is the event sequence is Ce = 35 msec and Te = 250
msec → execution utilization = 0.14.

2. Pre-emption time by higher priority tasks with periods less than Te -
there are three tasks to consider:
a) Shaft Interface - period of 10 msec can pre-empt any of the four

tasks a maximum of 25 times * CPU time of 2 msec = 50 msec.
b) Auto Sensors and Throttle Interface - both with periods of 100

msec can pre-empt any of the three lower priority tasks a
maximum of 3 times * CPU time of 12 msec = 36 msec.

 Total pre-emption time = 50 + 36 = 86 msec
 Total pre-emption utilization = 0.2 + 0.06 + 0.06 = 0.32

3. Pre-emption by higher priority tasks with longer periods - no
such tasks.

4. Blocking time by lower priority task - no such tasks.

Worst-case utilization = Pre-emption utilization + Execution utilization +
Blocking utilization = 0.32 + 0.14 = 0.46 < 0.69 (the GUBT upper bound)
→ all four tasks in the event sequence will meet their deadlines.

It is then necessary to determine that the two tasks with shorter period of
100 msec will meet their deadlines:

1. Execution time for the two tasks - the total execution time for the two
tasks (which have the same period) is 6 + 6 msec = 12 msec and the
execution utilization = 0.06 + 0.06 = 0.12.

RDCS 423 - Real-time Distributed Computer Systems pm/p29

2. Pre-emption time by higher priority tasks with periods less than 100
msec - there is only one task to consider:
• Shaft Interface - period of 10 msec which can pre-empt any of

the two tasks a maximum of 10 times * CPU time of 2 msec = 20
msec.

 Total pre-emption time = 20 msec
 Total pre-emption utilization = 0.2

3. Pre-emption by higher priority tasks with longer periods - there
is only one task to consider:
• Cruise Control Lever Interface - period of 250 msec which can

pre-empt only once for a CPU time of 6 msec.

4. Blocking time by lower priority task - no such tasks.

Worst-case utilization = Pre-emption utilizations + Execution utilization +
Blocking utilization = 0.2 + 0.06 + 0.12 = 0.38 < 0.69 (the GUBT upper
bound) → the two periodic tasks with shorter periods will meet their
deadlines.

The same analysis can be performed for each of the lower priority periodic
tasks to show that they meet their deadlines also.

Re-design Using Task Clustering Criteria

Where the design doesn't meet the performance criteria, modification of
the task architecture is usually required, and this is done through re-
application of the clustering criteria, i.e: temporal task inversion, multiple
instance task inversion, and sequential task inversion

For example, in the Cruise Control subsystem, sequential task inversion
can be applied to combine the Cruise Control task with Speed Adjustment
and the Throttle Interface task to produce an Inverted Cruise Control task
→ reduces the communications overhead from 3*Cm to Cm and reduces
the context switch overhead from 4*Cx to 2*Cx which then reduces the
event sequence CPU time from 35 msec to 32 msec.

