RTDS408 Tutorial Problems \#4 - Time Augmented and Stochastic Petri nets

1. We have a data acquisition system that has a single data channel acquired at a clock rate of $\mathrm{T}_{1}=4$ time units. The acquisition time is $\mathrm{T}_{2}=3$ time units and the data is preprocessed by different processes that are activated on alternate data points. These different processes perform data conversion ($\mathrm{T}_{3}=4$ and $\mathrm{T}_{5}=3$ time units respectively) and data normalization ($\mathrm{T}_{4}=5$ and $\mathrm{T}_{6}=6$ time units respectively). The data is then combined ($\mathrm{T}_{7}=1$ time unit) and then a moving average filter process is performed ($\mathrm{T}_{8}=$ 2 time units). Old data used in the filter process is removed by another process ($\mathrm{T}_{9}=3$ time units) and the final stage records the processed data point ($\mathrm{T}_{10}=4$ time units).

For this system, produce a Petri net graph to model all processes and augment it with process time information. Derive the constraints imposed on the process times making use of the notion of safeness in the presence of time. Determine if the system can achieve the specified time constraints.
2. Given the following SPN model for a system with the specified transition rates, determine the average time for token return to place p_{1}.

3. Given the control software for a two machine flexible manufacturing system with one assembly process each sharing a common tool, and the following transition rates:

$$
\begin{aligned}
& \lambda_{1}=6 \text { (process } 1 \text { waiting) } \\
& \lambda_{2}=7 \text { (process } 2 \text { waiting) } \\
& \lambda_{3}=9 \text { (process } 1 \text { active) } \\
& \lambda_{4}=10 \text { (process } 2 \text { active) }
\end{aligned}
$$

On average, what fraction of time is the first process using the shared tool as a percentage of the total assembly time?

