RTDS408 Tutorial Problem and Solutions #4 - Time Augmented and Stochastic Petri nets

1. We have a data acquisition system that has a single data channel acquired at a clock rate of $T_1 = 4$ time units. The acquisition time is $T_2 = 3$ time units and the data is preprocessed by different processes that are activated on alternate data points. These different processes perform data conversion ($T_3 = 4$ and $T_5 = 3$ time units respectively) and data normalization ($T_4 = 5$ and $T_6 = 6$ time units respectively). The data is then combined ($T_7 = 1$ time unit) and then a moving average filter process is performed ($T_8 = 2$ time units). Old data used in the filter process is removed by another process ($T_9 = 3$ time units) and the final stage records the processed data point ($T_{10} = 4$ time units).

For this system, produce a Petri net graph to model all processes and augment it with process time information. Derive the constraints imposed on the process times making use of the notion of *safeness in the presence of time*. Determine if the system can achieve the specified time constraints.

2. Given the following SPN model for a system with the specified transition rates, determine the average time for token return to place p_1 .

- 3. Given the control software for a two machine flexible manufacturing system with one assembly process each sharing a common tool, and the following transition rates:
 - $\lambda_1 = 6$ (process 1 waiting)
 - $\lambda_2 = 7$ (process 2 waiting)
 - $\lambda_3 = 9$ (process 1 active)
 - $\lambda_4 = 10$ (process 2 active)

On average, what fraction of time is the first process using the shared tool as a percentage of the total assembly time?

Solutions:

Apply consistency balance to all transitions to find all transition MRFFs F_i : Let $F_1 = 1 \rightarrow F_2 = 0.5$, $F_4 = 0.5$ $\rightarrow F_3 = 0.5$, $F_5 = 0.5 \rightarrow F_6 = 0.5$ $\rightarrow F_7 = 0.5 \rightarrow F_8 = 0.5 \rightarrow F_9 = 0.5$

Then apply the safeness criteria to each net construction:

- a. p_4 and p_6 are entry places to an independent cycle of p_7 , p_8 and p_9 : $T_4 \le T_1 / F_3$ and $T_7 + T_8 + T_9 \le T_1 / F_3 \Rightarrow T_4 \le 2T_1$ and $T_7 + T_8 + T_9 \le 2T_1$ $T_6 \le T_1 / F_5$ and $T_7 + T_8 + T_9 \le T_1 / F_5 \Rightarrow T_6 \le 2T_1$ and $T_7 + T_8 + T_9 \le 2T_1$
- b. p_4 and p_6 are also final places in a parallel synchronous path p_2 , p_3 , p_4 , and p_2 , p_5 , p_6 :

 $\begin{array}{c} T_2 + T_3 + T_4 \cdot (T_2 + T_5) \leq T_1 / F_5 \Rightarrow T_3 + T_4 - T_5 \leq 2T_1 \\ T_2 + T_5 + T_6 \cdot (T_2 + T_3) \leq T_1 / F_3 \Rightarrow T_5 + T_6 - T_3 \leq 2T_1 \end{array}$

c. p_2, p_3, p_5, p_7, p_8 , and p_{10} are all simple places so that: $T_2 \le T_1/F_1, T_3 \le T_1/F_2, T_5 \le T_1/F_4, T_7 \le T_1/F_6, T_8 \le T_1/F_7, T_{10} \le T_1/F_8$

Combining all time constraints and inserting the numerical values values: $T_1 = 4$, $T_2 = 3$, $T_3 = 4$, $T_4 = 5$, $T_5 = 3$, $T_6 = 6$, $T_7 = 1$, $T_8 = 2$, $T_9 = 3$, $T_{10} = 4$

$$\begin{split} T_4 &\leq 2T_1 \Rightarrow 5 \leq 2(4) \ \text{ and } T_6 \leq 2T_1 \Rightarrow 6 \leq 2(4) \\ T_7 + T_8 + T_9 &\leq 2T_1 \Rightarrow 1 + 2 + 3 \leq 2(4) \\ T_3 + T_4 - T_5 &\leq 2T_1 \Rightarrow 4 + 5 - 3 \leq 2(4) \\ T_5 + T_6 - T_3 &\leq 2T_1 \Rightarrow 3 + 6 - 4 \leq 2(4) \\ T_2 &\leq T_1 \Rightarrow 3 \leq 4, \ T_3 \leq 2T_1 \Rightarrow 4 \leq 2(4), \ T_5 \leq 2T_1 \Rightarrow 3 \leq 2(4), \ T_6 \leq 2T_1 \Rightarrow 6 \leq 2(4), \\ T_7 &\leq 2T_1 \Rightarrow 1 \leq 2(4), \ T_8 \leq 2T_1 \Rightarrow 2 \leq 2(4), \ T_{10} \leq 2T_1 \Rightarrow 4 \leq 2(4) \end{split}$$

Thus all the time constraints can be met.

2. Find the reachability set:

$$M_0 = (1, 0, 0, 0, 0, 0)$$
 $M_1 = (0, 1, 1, 0, 0, 1)$ $M_2 = (0, 0, 1, 1, 0, 1)$
 $M_3 = (0, 0, 0, 1, 1, 1)$ $M_4 = (0, 1, 0, 0, 1, 1)$

 $P[M_2] = 2P[M_1]$ $6P[M_3] = P[M_2] + 2P[M_4]$ $2P[M_4] = P[M_1]$ $P[M_0] + P[M_1] + P[M_2] + P[M_3] + P[M_4] = 1$

Solve these equations to give:

 $P[M_0] = 0.1429$ $P[M_1] = 0.2143$ $P[M_3] = 0.1071$ $P[M_4] = 0.1071$

 $P[M_2] = 0.4286$

and the token occupancy probabilities:

 $P[\mu_1=1] = P[M_0] = 0.1429$ $P[\mu_2=1] = P[M_1] + P[M_4] = 0.3214$ $P[\mu_3=1] = P[M_1] + P[M_2] = 0.6429$ $P[\mu_4=1] = P[M_2] + P[M_3] = 0.5357$ $P[\mu_5=1] = P[M_3] + P[M_4] = 0.2412$ $P[\mu_6=1] = P[M_1] + P[M_2] + P[M_3] + P[M_4] = 0.8571$

As we have token conservation, Little's law can be applied. The utilization of t_1 is $P[\mu_1=1] = 0.1429$ and as $\lambda_1 = 3$ the average token flow in p_1 is 0.4287 tokens/unit time. Due to the fork at t_1 , the flow through the subsystem (composed of p_2 , p_3 , p_4 , p_5 , p_6 and t_2, t_3, t_4, t_5) is:

 $\overline{\lambda} = 1.2861.$

The average number of tokens in the subsystem is given by :

$$\overline{N} = \overline{\mu}_2 + \overline{\mu}_3 + \overline{\mu}_4 + \overline{\mu}_5 + \overline{\mu}_6 = 2.5983$$

The average time a token takes to return to p_1 is given by:

$$\overline{T} = \frac{\overline{N}}{\overline{\lambda}} = 2.02$$
 time units

 p_{5} The reachability set is: $M_1 = (1, 1, 0, 0, 1)$ $M_2 = (0, 1, 1, 0, 0)$ $M_3 = (1, 0, 0, 1, 0)$ and the corresponding Markov chain: $\lambda_1 = 6$ Applying a flow balance to the marking M probabilities gives: $13P[M_1] = 9P[M_2] + 10P[M_3]$ $9P[M_2] = 6P[M_1]$ $\lambda_3 = 9$ $\lambda_4 = 10$ $10P[M_3] = 7P[M_1]$ $P[M_1] + P[M_2] + P[M_3] = 1$ Solve to give: $P[M_1] = 0.4225$ $P[M_2] = 0.2817$ $P[M_3] = 0.2958$ and the token occupancy probabilities are: $P[\mu_1 = 1] = P[M_1] + P[M_3] = 0.7183$ $P[\mu_2 = 1] = P[M_1] + P[M_2] = 0.7042$ $P[\mu_3 = 1] = P[M_2] = 0.2817$ $P[\mu_4 = 1] = P[M_3] = 0.2958$ $P[\mu_5 = 1] = P[M_1] = 0.4225$ As t_1 requires tokens at p_1 and p_5 to be enabled, the utilization is: $P[\mu_1 = 1]P[\mu_5 = 1] = 0.3035$ As $\lambda_1 = 6$, the average token flow into p_3 (and hence into subsystem 1) is: $\overline{\lambda}_{1} = 6 \times 0.3035 = 1.8209$ The average number of tokens in subsystem 1 is $\overline{N}_1 = P[\mu_3 = 1] = 0.2817$ Thus the average time a token spends in p_3 (and hence the average time that the 1st machine assembles a part in process 1) is given by: $\overline{\mathbf{\lambda}T}$

$$\overline{T}_1 = \frac{N_1}{\overline{\lambda}_1} = 0.1547$$
 time units

3.

The same approach is used for process 2 to give: $\overline{T}_2 = \frac{\overline{N}_2}{\overline{\lambda}_2} = 0.1420$ time units

Thus process 1 is active 0.1547/(0.1547+0.1420) = 52.1% of the assembly time.