RTDS408 Tutorial Problem and Solutions \#4-Time Augmented and Stochastic Petri nets

1. We have a data acquisition system that has a single data channel acquired at a clock rate of $\mathrm{T}_{1}=4$ time units. The acquisition time is $\mathrm{T}_{2}=3$ time units and the data is preprocessed by different processes that are activated on alternate data points. These different processes perform data conversion ($\mathrm{T}_{3}=4$ and $\mathrm{T}_{5}=3$ time units respectively) and data normalization ($\mathrm{T}_{4}=5$ and $\mathrm{T}_{6}=6$ time units respectively). The data is then combined ($\mathrm{T}_{7}=1$ time unit) and then a moving average filter process is performed ($\mathrm{T}_{8}=$ 2 time units). Old data used in the filter process is removed by another process ($\mathrm{T}_{9}=3$ time units) and the final stage records the processed data point ($\mathrm{T}_{10}=4$ time units).

For this system, produce a Petri net graph to model all processes and augment it with process time information. Derive the constraints imposed on the process times making use of the notion of safeness in the presence of time. Determine if the system can achieve the specified time constraints.
2. Given the following SPN model for a system with the specified transition rates, determine the average time for token return to place p_{1}.

3. Given the control software for a two machine flexible manufacturing system with one assembly process each sharing a common tool, and the following transition rates:
$\lambda_{1}=6$ (process 1 waiting)
$\lambda_{2}=7$ (process 2 waiting)
$\lambda_{3}=9$ (process 1 active)
$\lambda_{4}=10$ (process 2 active)
On average, what fraction of time is the first process using the shared tool as a percentage of the total assembly time?

Solutions:

1.

Apply consistency balance to all transitions to find all transition MRFFs F_{i} : Let $\mathrm{F}_{1}=1 \rightarrow \mathrm{~F}_{2}=0.5, \mathrm{~F}_{4}=0.5$

$$
\begin{aligned}
& \rightarrow \mathrm{F}_{3}=0.5, \mathrm{~F}_{5}=0.5 \rightarrow \mathrm{~F}_{6}=0.5 \\
& \rightarrow \mathrm{~F}_{7}=0.5 \rightarrow \mathrm{~F}_{8}=0.5 \rightarrow \mathrm{~F}_{9}=0.5
\end{aligned}
$$

Then apply the safeness criteria to each net construction
a. $\quad p_{4}$ and p_{6} are entry places to an independent cycle of p_{7}, p_{8} and p_{9} :
$T_{4} \leq T_{1} / F_{3}$ and $T_{7}+T_{8}+T_{9} \leq T_{1} / F_{3} \Rightarrow T_{4} \leq 2 T_{1}$ and $T_{7}+T_{8}+T_{9} \leq 2 T_{1}$
$T_{6} \leq T_{1} / F_{5}$ and $T_{7}+T_{8}+T_{9} \leq T_{1} / F_{5} \Rightarrow T_{6} \leq 2 T_{1}$ and $T_{7}+T_{8}+T_{9} \leq 2 T$
b. $\quad p_{4}$ and p_{6} are also final places in a parallel synchronous path p_{2}, p_{3}, p_{4}, and p_{2}, p_{5},
p_{6} :

$$
\begin{aligned}
& T_{2}+T_{3}+T_{4}-\left(T_{2}+T_{5}\right) \leq T_{1} / F_{5} \Rightarrow T_{3}+T_{4}-T_{5} \leq 2 T_{1} \\
& T_{2}+T_{5}+T_{6}-\left(T_{2}+T_{3}\right) \leq T_{1} / F_{3} \Rightarrow T_{5}+T_{6}-T_{3} \leq 2 T_{1}
\end{aligned}
$$

c. $\quad p_{2}, p_{3}, p_{5}, p_{7}, p_{8}$, and p_{10} are all simple places so that:
$T_{2} \leq T_{1} / F_{1}, T_{3} \leq T_{1} / F_{2}, T_{5} \leq T_{1} / F_{4}, T_{7} \leq T_{1} / F_{6}, T_{8} \leq T_{1} / F_{7}, T_{10} \leq T_{1} / F_{8}$
Combining all time constraints and inserting the numerical values values: $\mathrm{T}_{1}=4, \mathrm{~T}_{2}=3, \mathrm{~T}_{3}=4, \mathrm{~T}_{4}=5, \mathrm{~T}_{5}=3, \mathrm{~T}_{6}=6, \mathrm{~T}_{7}=1, \mathrm{~T}_{8}=2, \mathrm{~T}_{9}=3, \mathrm{~T}_{10}=4$
$T_{4} \leq 2 T_{1} \Rightarrow 5 \leq 2(4)$ and $T_{6} \leq 2 T_{1} \Rightarrow 6 \leq 2(4)$
$T_{7}+T_{8}+T_{9} \leq 2 T_{1} \Rightarrow 1+2+3 \leq 2(4)$
$T_{3}+T_{4}-T_{5} \leq 2 T_{1} \Rightarrow 4+5-3 \leq 2(4)$
$T_{5}+T_{6}-T_{3} \leq 2 T_{1} \Rightarrow 3+6-4 \leq 2(4)$
$T_{2} \leq T_{1} \Rightarrow 3 \leq 4, T_{3} \leq 2 T_{1} \Rightarrow 4 \leq 2(4), T_{5} \leq 2 T_{1} \Rightarrow 3 \leq 2(4), T_{6} \leq 2 T_{1} \Rightarrow 6 \leq 2(4)$,
$T_{7} \leq 2 T_{1} \Rightarrow 1 \leq 2(4), T_{8} \leq 2 T_{1} \Rightarrow 2 \leq 2(4), T_{10} \leq 2 T_{1} \Rightarrow 4 \leq 2(4)$
Thus all the time constraints can be met.
2. Find the reachability set:

$$
M_{0}=(1,0,0,0,0,0)
$$

$$
M_{1}=(0,1,1,0,0,1)
$$

$$
M_{3}=(0,0,0,1,1,1)
$$

$$
M_{4}=(0,1,0,0,1,1)
$$

And the reachability tree:

Draw the Markov chain: $\quad \lambda_{3}=1$

Applying a 'flow' balance:
$3 \mathrm{P}\left[M_{0}\right]=4 \mathrm{P}\left[M_{3}\right]$
$3 \mathrm{P}\left[M_{1}\right]=2 \mathrm{P}\left[M_{3}\right]+3 \mathrm{P}\left[M_{0}\right]$
$\mathrm{P}\left[M_{2}\right]=2 \mathrm{P}\left[M_{1}\right]$
$6 \mathrm{P}\left[M_{3}\right]=\mathrm{P}\left[M_{2}\right]+2 \mathrm{P}\left[M_{4}\right]$
$2 \mathrm{P}\left[M_{4}\right]=\mathrm{P}\left[M_{1}\right]$
$\mathrm{P}\left[M_{0}\right]+\mathrm{P}\left[M_{1}\right]+\mathrm{P}\left[M_{2}\right]+\mathrm{P}\left[M_{3}\right]+\mathrm{P}\left[M_{4}\right]=1$
Solve these equations to give:

$\mathrm{P}\left[M_{0}\right]=0.1429$	$\mathrm{P}\left[M_{1}\right]=0.2143$
$\mathrm{P}\left[M_{3}\right]=0.1071$	$\mathrm{P}\left[M_{4}\right]=0.1071$

$\mathrm{P}\left[M_{3}\right]=0.1071$
$\mathrm{P}\left[M_{4}\right]=0.1071$
and the token occupancy probabilities
$\mathrm{P}\left[\mu_{1}=1\right]=\mathrm{P}\left[M_{0}\right]=0.1429$
$\mathrm{P}\left[\mu_{3}=1\right]=\mathrm{P}\left[M_{1}\right]+\mathrm{P}\left[M_{2}\right]=0.6429$
$\mathrm{P}\left[\mu_{2}=1\right]=\mathrm{P}\left[M_{1}\right]+\mathrm{P}\left[M_{4}\right]=0.3214$
$\mathrm{P}\left[\mu_{4}=1\right]=\mathrm{P}\left[M_{2}\right]+\mathrm{P}\left[M_{3}\right]=0.5357$
$\mathrm{P}\left[\mu_{5}=1\right]=\mathrm{P}\left[M_{3}\right]+\mathrm{P}\left[M_{4}\right]=0.2412$
$\mathrm{P}\left[\mu_{6}=1\right]=\mathrm{P}\left[M_{1}\right]+\mathrm{P}\left[M_{2}\right]+\mathrm{P}\left[M_{3}\right]+\mathrm{P}\left[M_{4}\right]=0.8571$
As we have token conservation, Little's law can be applied. The utilization of t_{1} is $\mathrm{P}\left[\mu_{1}=1\right]=0.1429$ and as $\lambda_{1}=3$ the average token flow in p_{1} is 0.4287 tokens/unit time. Due to the fork at t_{1}, the flow through the subsystem (composed of $p_{2}, p_{3}, p_{4}, p_{5}, p_{6}$ and $t_{2}, t_{3}, t_{4}, t_{5}$) is:

$$
\bar{\lambda}=1.2861
$$

The average number of tokens in the subsystem is given by :

$$
\bar{N}=\bar{\mu}_{2}+\bar{\mu}_{3}+\bar{\mu}_{4}+\bar{\mu}_{5}+\bar{\mu}_{6}=2.5983
$$

The average time a token takes to return to p_{1} is given by:

$$
\bar{T}=\frac{\bar{N}}{\bar{\lambda}}=2.02 \text { time units }
$$

3.

The reachability set is:
$M_{1}=(1,1,0,0,1)$
$M_{2}=(0,1,1,0,0)$
$M_{3}=(1,0,0,1,0)$
and the corresponding Markov chain:

Applying a flow balance to the marking probabilities gives:
$13 \mathrm{P}\left[M_{1}\right]=9 \mathrm{P}\left[M_{2}\right]+10 \mathrm{P}\left[M_{3}\right]$
$9 \mathrm{P}\left[M_{2}\right]=6 \mathrm{P}\left[M_{1}\right]$
$10 \mathrm{P}\left[M_{3}\right]=7 \mathrm{P}\left[M_{1}\right]$

$\mathrm{P}\left[M_{1}\right]+\mathrm{P}\left[M_{2}\right]+\mathrm{P}\left[M_{3}\right]=1$
Solve to give:

$$
\begin{array}{ll}
\mathrm{P}\left[M_{1}\right]=0.4225 & \mathrm{P}\left[M_{2}\right]=0.2817
\end{array} \mathrm{P}\left[M_{3}\right]=0.2958
$$

and the token occupancy probabilities are:
$\mathrm{P}\left[\mu_{1}=1\right]=\mathrm{P}\left[M_{1}\right]+\mathrm{P}\left[M_{3}\right]=0.7183$
$\mathrm{P}\left[\mu_{2}=1\right]=\mathrm{P}\left[M_{1}\right]+\mathrm{P}\left[M_{2}\right]=0.7042$
$\mathrm{P}\left[\mu_{3}=1\right]=\mathrm{P}\left[M_{2}\right]=0.2817$
$\mathrm{P}\left[\mu_{4}=1\right]=\mathrm{P}\left[M_{3}\right]=0.2958$
$\mathrm{P}\left[\mu_{5}=1\right]=\mathrm{P}\left[M_{1}\right]=0.4225$
As t_{1} requires tokens at p_{1} and p_{5} to be enabled, the utilization is.
$\mathrm{P}\left[\mu_{1}=1\right] \mathrm{P}\left[\mu_{5}=1\right]=0.3035$
As $\lambda_{1}=6$, the average token flow into p_{3} (and hence into subsystem 1) is:

$$
\bar{\lambda}_{1}=6 \times 0.3035=1.8209
$$

The average number of tokens in subsystem 1 is $\bar{N}_{1}=\mathrm{P}\left[\mu_{3}=1\right]=0.2817$
Thus the average time a token spends in p_{3} (and hence the average time that the 1 st machine assembles a part in process 1) is given by:

$$
\bar{T}_{1}=\frac{\bar{N}_{1}}{\bar{\lambda}_{1}}=0.1547 \text { time units }
$$

The same approach is used for process 2 to give: $\bar{T}_{2}=\frac{\bar{N}_{2}}{\bar{\lambda}_{2}}=0.1420$ time units
Thus process 1 is active $0.1547 /(0.1547+0.1420)=52.1 \%$ of the assembly time.

