RTDS408 Tutorial Problems \#2 - Time Handling and Temporal Relations

1. A master-slave clock algorithm was used to synchronize a slave processor clock. At the start of the update cycle the master clock had a time of 10:00:00.000000 and the slave received the master's clock after $10 \mu \mathrm{sec}$ at its clock time of 10:00:00.000500. In the second phase of the update cycle, the slave responds with a time of 10:00:00.001000 which is transmitted to the master in $30 \mu \mathrm{sec}$ where the master clock reads 10:00:00.000540. Assuming that nothing is known about the slave clock errors apart from the assumption of a zero-mean Gaussian distribution, what is the clock update that would be sent from the master to the slave?
2. With a master-slave clock algorithm, show that a bound on the maximal clock error between slaves would be given by the following expression:

$$
\left|2 \tau \max _{j}\left(\delta_{j}\right)\right|+\left|2 \max _{j}\left(\epsilon_{j}\right)\right|
$$

where $j=1$.. number of slaves
$\delta_{j}=$ the drift rate (in sec $/ \mathrm{sec}$) for slave j
$\epsilon_{j}=\left(\bar{\mu}_{i}^{j}-\bar{\mu}_{j}^{i}\right) / 2-\left(\bar{E}_{j}^{1}-\bar{E}_{j}^{2}\right) / 2$
$\tau=$ update period (sec)
$\bar{\mu}_{i}^{j}, \quad \bar{\mu}_{j}^{i}=$ mean master-slave and slave-master communication times respectively
$\bar{E}_{j}^{1}, \bar{E}_{j}^{2}=$ mean slave clock error distribution times
3. Given a fundamental ordering distributed clock algorithm, develop a bound for the variation of each clock in a distributed network with a communication graph of diameter d. Calculate this bound for a case with a clock drift rate of 0.001 , message update rate of 10 msec , upper bound on message delays of $10 \mu \mathrm{sec}$, and a communication graph diameter of 10 hops.
4. With a distributed clock algorithm that uses a minimize maximum error approach, determine what clock update is performed from node j given the following states at node i and node j at the time of the update cycle:

At node i : let the reset time be 00:00:00.000000, the count time is 00:00:00.001000, the drift rate is estimated at 0.01 , and the estimated discretization error is $5 \mu \mathrm{sec}$.

At node j : let the reset time be 00:00:00.000000, the count time is 00:00:00.001020, the drift rate is estimated at 0.01 , and the estimated discretization error is $20 \mu \mathrm{sec}$. The response delay from node i to node j is $5 \mu \mathrm{sec}$.

