RTDS408 Tutorial Problems \& Solutions \#1-Real-Time Scheduling Theory

1. Consider the case of three periodic tasks:

> Task $t_{1}: C_{1}=20 \mathrm{~ms} ; T_{1}=100 \mathrm{~ms}$ Task $t_{2}:$ $C_{2}=40 \mathrm{~ms} ; T_{2}=150 \mathrm{~ms}$

Task $t_{3}: C_{3}=100 \mathrm{~ms} ; T_{3}=350 \mathrm{~ms}$
Apply the Utilization Bound Theorem to determine if these tasks are schedulable using a rate monotonic scheduling strategy. Suppose the computation time for task 1 doubles to 40 msec , now determine if the tasks are schedulable, and then apply the less conservative Completion Time Theorem.
2. Suppose we have four tasks: two periodic, one aperiodic, and one interrupt driven aperiodic. The non-interrupt driven tasks require access to a shared data store, and we wish to give the interrrupt-drive task the highest priority:

```
periodic task t1: C
    aperiodic task t2: C2 = 30 ms, T2 = 150 ms
    interrupt driven aperiodic task }\mp@subsup{t}{\textrm{a}}{2}:\mp@subsup{C}{\textrm{a}}{}=10\textrm{ms},\mp@subsup{T}{\textrm{a}}{}=200\textrm{ms
    periodic task t3: C
```

The context switch time is included in the indicated CPU times. Use the Generalized Utilization Bound Theorem to determine if this task set is schedulable.
3. Given two tasks T_{1} and T_{2} with two shared data structures protected with binary semaphores S_{1} and S_{2}, show how the priority ceiling protocol prevents mutual deadlock and guarantees that a high-priority task will be blocked by at most one critical section of any lower priority task.

Solutions:

1. Compute the utilizations for each task:

Task $t_{1}: C_{1}=20 \mathrm{~ms} ; T_{1}=100 \mathrm{~ms} \rightarrow U_{1}=0.2$
Task $t_{2}: C_{2}=40 \mathrm{~ms} ; T_{2}=150 \mathrm{~ms} \rightarrow U_{2}=0.267$
Task $t_{3}: C_{3}=100 \mathrm{~ms} ; T_{3}=350 \mathrm{~ms} \rightarrow U_{3}=0.286$
i.e. $\mathrm{U}_{\text {total }}=0.753$ Assume that the context switch overhead is included in the CPU times. The upper bound from the Utilization Bound Theorem is:
$U(3)=3\left(2^{1 / 3}-1\right)=0.78$
which is greater than the total utilization of these tasks \rightarrow all three tasks can meet their deadlines.

Given that t_{1} 's performance changes to:

$$
\text { Task } t_{1}: C_{1}=40 \mathrm{~ms} ; T_{1}=100 \mathrm{~ms} \rightarrow U_{1}=0.4
$$

Now, $\mathrm{U}_{\text {total }}=0.953$ which is greater than the bound \rightarrow the tasks fail to meet their deadlines. Also the first two tasks can be checked in the same way, e.g. $U_{\text {total }}=0.667$ and the upper bound becomes:
$U(2)=2\left(2^{1 / 2}-1\right)=0.828$
which is greater than the total utilization of these tasks \rightarrow at least the first two tasks can meet their deadlines.

The basis for applying the Completion Time Theorem is that provided each task completes execution before its first period (i.e. meets its first deadline) when all tasks are started at the same time, then the deadlines will be met for any task start times.

The worst-case scenario is with all three tasks ready to execute at the same time. Using rate monotonic scheduling t_{1} executes first, followed by t_{2} then t_{3}.

Note that task t_{i} will execute once for a CPU time of C_{i} during a period T_{i} and higher priority tasks will execute more often and may pre-empt task t_{i}. Thus it is necessary to consider the CPU time used by all higher priority tasks.

The ends of the first periods of each of the tasks, T_{i}, are referred to as scheduling points.

Look at the appropriate scheduling points for task 3, i.e. the ends of the periods of all higher priority tasks which have times less than or equal to task 3's period.

The completion time theorem checks that all tasks have completed their execution at any of the scheduling points (SP). For example, to check if all tasks met their deadlines at task 3's SP, i.e. 350 msec , we potentially have 4 executions of task 1,3 executions of task 2 and 1 execution of task $3 \rightarrow 4 C_{1}+3 C_{2}+C_{3} \leq T_{3}$? $(160+120+100>350)$

This doesn't mean the task set can't meet its deadlines - the theorem requires that all SP's be checked, i.e. if all tasks can meet their deadlines for one scheduling point, then the task set is schedulable. So looking at each scheduling point:

$$
\begin{aligned}
& \mathrm{T}_{1}: C_{1}+C_{2}+C_{3} \leq T_{1} ? \quad(40+40+100>100) \\
& \mathrm{T}_{2}: 2 C_{1}+C_{2}+C_{3} \leq T_{2} ? \quad(80+40+100>150) \\
& 2 \mathrm{~T}_{1}: 2 C_{1}+2 C_{2}+C_{3} \leq 2 T_{1} ? \quad(80+80+100>200) \\
& 3 \mathrm{~T}_{1}: 3 C_{1}+2 C_{2}+C_{3} \leq 3 T_{1} ? \quad(120+80+100=300) \\
& 2 \mathrm{~T}_{2}: 3 C_{1}+2 C_{2}+C_{3} \leq 2 T_{2} ? \quad(120+80+100=300) \\
& \mathrm{T}_{3}: 4 C_{1}+3 C_{2}+C_{3} \leq T_{3} ? \quad(160+120+100>350)
\end{aligned}
$$

Thus the condition for SP $3 T_{1}$ is met, i.e. after 300 msec , task 1 will have run 3 times, task 2 will have run 2 times and task 3 once \rightarrow the required computation fits in this SP.

Note that this indicates that we could not add any higher priority tasks than task 3 , otherwise it would miss its deadline. But tasks of lower priority than task 3 could be added if they have a sufficiently long period.

Applying the mathematical expression for the Completion Time Theorem where C_{j} is the execution time, and T_{j} is the period, of task t_{j} :

$$
\forall i, 1 \leq i \leq n, \forall(k, p) \in R_{i}, \quad \sum_{j=1}^{i} C_{j}\left\lceil\frac{p T_{k}}{T_{j}}\right\rceil \leq p T_{k}
$$

where $R_{i}=\left\{(k, p) \mid 1 \leq k \leq i, p=1, \cdots,\left\lfloor T_{i} / T_{k}\right\rfloor\right\}$ and at least one of the inequalities must be met for each i.

As an example, we must check task t_{3} against t_{1} : i.e. $i=3$ and $k=1$

$$
\begin{aligned}
& \rightarrow p=1, \ldots,\left\lfloor T_{i} / T_{k}\right\rfloor=1, \ldots,\lfloor 350 / 100\rfloor=1,2,3 \\
& \text { i.e. } R_{i}=(k, p)=(1,1),(1,2),(1,3) \\
& \begin{aligned}
\text { e.g for }(k, p)=(1,3) & \Rightarrow C_{1}\left\lceil\frac{(3) T_{1}}{T_{1}}\right\rceil+C_{2}\left\lceil\frac{(3) T_{1}}{T_{2}}\right\rceil+C_{3}\left\lceil\frac{(3) T_{1}}{T_{3}}\right\rceil \leq(3) T_{1} \\
& \Rightarrow C_{1}\left\lceil\frac{(3) 100}{100}\right\rceil+C_{2}\left\lceil\frac{(3) 100}{150}\right\rceil+C_{3}\left\lceil\frac{(3) 100}{350}\right\rceil \leq 3 T_{1} \\
3 C_{1}+2 C_{2} & +C_{3} \leq 3 T_{1}
\end{aligned} \Rightarrow 120+80+100=300
\end{aligned}
$$

and as at least one inequality is met, so the task set is schedulable (strictly, by the theorem, we would also have to check task 2 against task 1, and task 1 against itself).
2. First, determine the utilizations:
periodic task $t_{1}: C_{1}=30 \mathrm{~ms}, T_{1}=100 \mathrm{~ms} \rightarrow U_{1}=0.3$
aperiodic task $t_{2}: C_{2}=30 \mathrm{~ms}, T_{2}=150 \mathrm{~ms} \rightarrow U_{2}=0.2$
interrupt driven aperiodic task $t_{\mathrm{a}}: C_{\mathrm{a}}=10 \mathrm{~ms}, T_{\mathrm{a}}=200 \mathrm{~ms} \rightarrow U_{\mathrm{a}}=0.05$
periodic task $t_{3}: C_{3}=30 \mathrm{~ms}, T_{3}=300 \mathrm{~ms} \rightarrow U_{3}=0.1$
Using rate monotonic priority assignment, the priorities would be $t_{1}, t_{2}, t_{\mathrm{a}}, t_{3}$. Because a fast response is required to interrupts the priority of t_{a} is raised to be the highest.

The overall CPU utilization is 0.65 which is less than the utilization bound $U(4)=4\left(2^{1 / 4}-1\right)$ $=0.76$. Because of the non-rate monotonic priority assignment it is necessary to consider each task individually:
A. Consider task t_{a} - highest priority with $U_{a}=0.05 \rightarrow$ no trouble meeting its deadline.
B. Consider task t_{1} - apply the Generalized Utilization Bound Theorem:
a) Pre-emption by high-priority tasks with periods less than T_{1} (there are none here).
b) Execution utilization for task t_{1} is $U_{1}=0.3$
c) Pre-emption by high-priority tasks with longer periods. Task t_{a} falls into this category \rightarrow utilization in the period of the task is $C_{a} / T_{1}=10 \mathrm{~ms} / 100 \mathrm{~ms}=0.1$.
d) Blocking time by lower priority tasks. Both t_{2} and t_{3} can potentially block $t_{1} \rightarrow$ assuming the priority ceiling algorithm is being used, at most only one task can block t_{1}, so take the worst-case of t_{3} (since it has the longer execution time), i.e. blocking utilization during the period of the task is $B_{3} / T_{1}=30 \mathrm{~ms} / 100 \mathrm{~ms}=0.3$.

For task t_{1}, the worst case utilization $=0.3+0.1+0.3=0.7$ which is less than the worst case utilization bound $=0.76 \rightarrow$ task t_{1} will meet it's deadline.
C. Consider task t_{2} - apply the Generalized Utilization Bound Theorem
a) Pre-emption by high-priority tasks with periods less than T_{2}. Task t_{1} has a period less than T_{2}, so its pre-emption utilization during the period is $U_{1}=0.3$.
b) Execution utilization $U_{2}=0.2$.
c) Pre-emption by high-priority tasks with longer periods. Task t_{a} falls into this category \rightarrow utilization in the period of the task is $C_{a} / T_{2}=10 \mathrm{~ms} / 150 \mathrm{~ms}=0.07$.
d) Blocking time by lower priority tasks. Task t_{3} can potentially block $t_{2} \rightarrow$ again assuming the priority ceiling algorithm is being used, at most only one task can block t_{2}, so take the worst-case of t_{3}, i.e. blocking utilization during the period of the task is $B_{3} / T_{2}=30 \mathrm{~ms} / 150 \mathrm{~ms}=0.2$.

For task t_{2}, the worst case utilization $=0.3+0.2+0.07+0.2=0.77$ which is greater than the worst case utilization bound $=0.76 \rightarrow$ task t_{2} will just miss its deadline.
D. Consider task t_{3}-apply the Generalized Utilization Bound Theorem
e) Pre-emption by high-priority tasks with periods less than T_{3}. Tasks t_{1}, t_{2} and t_{a} have periods less than T_{3}, so its pre-emption utilization during the period is $U_{1}+U_{2}+U_{a}=0.3+0.2+0.05=0.55$
f) Execution utilization $U_{3}=0.1$.
g) Pre-emption by high-priority tasks with longer periods. There are no tasks in this category.
h) Blocking time by lower priority tasks. There are no lower priority tasks.

For task t_{3}, the worst case utilization $=0.55+0.1=0.65$ which is less than the worst case utilization bound $=0.76 \rightarrow$ task t_{3} will meet its deadline.

Thus all four tasks will not meet their deadlines (although task 2 is close to meeting its deadline). As usually the worst case upper bound is taken to be 0.69 to provide a reasonable safety-margin \rightarrow requires rescheduling of tasks
3. Let T_{1} attempt to lock the semaphores in the order S_{1} then S_{2} and T_{2} attempt to lock in the reverse order. Also let T_{1} have higher priority than T_{2}. As both tasks use the semaphores, the priority ceilings of S_{1} and S_{2} must be set to that of task T_{1} or higher.

Let T_{2} start by acquiring S_{2} and when T_{1} is executed it will pre-empt T_{2}. T_{1} attempts to lock S_{1} but because its priority is not higher than the priority ceiling of already locked semaphore S_{2} it is suspended. Task T_{2} has its priority raised to that of the semaphore it has acquired (S_{2}) and it now continues execution and acquires S_{1}.

Only one lower priority task can block T_{1} because when the semaphore that the lower priority task has (in this case T_{2}) is returned, T_{1} continues execution with that semaphore (since it was suspended at that point and is the highest priority task waiting on that semaphore).

